1 lecture 4: transistor summary/inverter analysis subthreshold mosfet currents ieee spectrum, 7/99,...

15
1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26

Post on 21-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26

1Lecture 4: Transistor Summary/Inverter Analysis

Subthreshold MOSFET currents

IEEE Spectrum, 7/99, p. 26

Page 2: 1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26

2Lecture 4: Transistor Summary/Inverter Analysis

ID versus VDS

-4

VDS (V)0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5x 10

I D (

A)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10

-4

VDS (V)

I D (

A)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

ResistiveSaturation

VDS = VGS - VT

Long Channel Short Channel

© Digital Integrated Circuits2nd

Page 3: 1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26

3Lecture 4: Transistor Summary/Inverter Analysis

Current-Voltage Relations in the Deep-Submicron Era

LinearRelationship

-4

VDS (V)0 0.5 1 1.5 3 3.3

0

0.5

1

1.5

2

2.5x 10

I D (

A)

VGS= 3.3 V

VGS= 2.5 V

VGS= 1.65 V

VGS= 1.0 V

nFET

2.5

Page 4: 1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26

4Lecture 4: Transistor Summary/Inverter Analysis

Current-Voltage Relations in the Deep-Submicron Era

LinearRelationship

VGS= -3.3 V

VGS= -2.5 V

VGS= -1.65 V

VGS= -1.0 V

-4

0

-0.5

-1

-1.5

-2

-2.5 x 10

I D (

A)

0

VDS (V)

-0.5-1.0-1.5-3.0-3.3 -2.5

pFET

Page 5: 1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26

-4

VDS

(V)

0 0.5 1 1.5 3 3.30

0.5

1

1.5

2

2.5x 10

I D (

A)

VGS= 3.3 V

VGS= 2.5 V

VGS= 1.65 V

VGS= 1.0 V

2.5

Page 6: 1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26

VGS= -3.3 V

VGS= -2.5 V

VGS= -1.65 V

VGS= -1.0 V

V

DS

(V)

-0.5-1.0-1.5-3.0-3.3

-4

0

-0.5

-1

-1.5

-2

-2.5x 10

ID (A)

0

-2.5

Page 7: 1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26

7Lecture 4: Transistor Summary/Inverter Analysis

W/L and transistor sizing

Length L

SourceGate

Channel

Wid

th W

Contact

Page 8: 1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26

VGS= -3.3 V

VGS= -2.5 V

VGS= -1.65 V

VGS= -1.0 V

-4

0

-0.5

-1

-1.5

-2

-2.5 x 10

I D (A

)

0

V

DS

(V)

-0.5-1.0-1.5-3.0-3.3 -2.5

Page 9: 1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26

9Lecture 4: Transistor Summary/Inverter Analysis

Inverter layout

Page 10: 1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26

10Lecture 4: Transistor Summary/Inverter Analysis

Some Definitions

Voh output voltage highVol output voltage low

Vih minimum allowed voltage input for a logic-low output

Vil maximum allowed voltage input for a logic-high output

Noise margin: NML = Vil – Vol NMH = Voh – Vih

Vm switching threshold (where Vout=Vin)

Fan-in: The number of inputs to a gateFan-out: The number of loads (min geometry) the gate drives

Propagation delay: The signal delay through a gate (50% points of input and output)

Rise and fall times: Time for a signal to transition from 10% to 90% of its logic swing

Power–delay product (gate power)×(gate prop delay)

Page 11: 1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26

11Lecture 4: Transistor Summary/Inverter Analysis

n / p ratio (kn/kp)

Vinv is set by n / p You can size the transistors to place Vinv where you want it

Affects noise margin and speed

Optimal noise margin: Make p FET wider than n FETn

p

Page 12: 1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26

12Lecture 4: Transistor Summary/Inverter Analysis

Switching Threshold as a function of Transistor Ratio

100

101

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

MV

(V

)

Wp

/Wn © Digital Integrated Circuits2nd

Page 13: 1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26

13Lecture 4: Transistor Summary/Inverter Analysis

Inverter power dissipation

Static power Dissipation when the inverter isn’t switching Primarily subthreshold currents

And very small noise currents

Page 14: 1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26

14Lecture 4: Transistor Summary/Inverter Analysis

Inverter power dissipation (con’t)

Dynamic power: Direct-path current pFET and nFET are both on during switching

Direct current path from Vdd to gnd Integrate curve to find energy loss Edirect

Dissipation = Edirect × switching frequency

Page 15: 1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26

15Lecture 4: Transistor Summary/Inverter Analysis

Inverter power dissipation (con’t)

Dynamic power: Driving load capacitance Charge capacitor to Vdd; then discharge to gnd Dissipation = CVdd

2 × switching frequency