1 july 14, 20052005 shine workshopkeauhou, hawaii, usa chanruangrith channok, 1 david ruffolo, 1...

46
1 July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time Shock Acceleration and Fits to ESP Ion Spectra

Upload: nicholas-skinner

Post on 03-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

1

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Chanruangrith Channok,1 David Ruffolo,1

Mihir Desai,2 and Glenn Mason2

1THAILAND 2USA

Finite-Time Shock Accelerationand Fits to ESP Ion Spectra

Page 2: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

2

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

… and in the spirit End-to-End Modeling of CMEs and SEPs,

a few words on

• Modeling SEP transport to infer injection and transport parameters

• Interplanetary turbulence and perpendicular transport

Page 3: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

22 23 24 25 26 27

2001 November (UT)

10-710-6

10-5

10-4

10-3

10-2

10-1

100

101

102103

0.14

0.27

0.55

1.09

2.19

4.37

8.55

14.35

25.20

51.35

ACE ULEIS + SISOxygen Intensities

MeV n-1

S

S15W34

Oxygen Intensities for November 24 Oxygen Intensities for November 24 2001 IP shock 2001 IP shock

(Desai et al. 2003)(Desai et al. 2003)

ESP

SEP

Page 4: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

(Desai et al. 2004)

10-4

10-3

10-2

10-1

100

101

102

103

10-2

10-1

100

101

22 23 24 25 26 27 28 29

1999 June (UT)

10-1

100

101

ACE/ULEIS C, O, Fe Intensities

ACE/ULEIS C/O ratio

ACE/ULEIS Fe/O ratio

S2

0.16-0.23 MeV n-1 (x10)

0.91-1.28 MeV n-1

OCFe

0.2 MeV n-1

1.0 MeV n-1

0.2 MeV n-1

1.0 MeV n-1

Ambient

(a)

(b)

(c)

Shock

Fe/O at IP shocks Fe/O at IP shocks

is depleted is depleted

relative to relative to

ambient values ambient values

Larger decrease Larger decrease

at higher energy at higher energy

Page 5: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

Spectra and abundances Spectra and abundances for Nov. 24 2001 IP shockfor Nov. 24 2001 IP shock

10-1 100 101 102

Kinetic Energy (MeV n-1)

10-3

10-1

101

103

105

107

109

10-2

10-1

100

101

10-1 100 101 102

Kinetic Energy (MeV n-1)

C/OFe/O

COFe

(a) (b)

(Desai et al. 2004, ApJ).(Desai et al. 2004, ApJ).

Page 6: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

6

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Possible mechanisms suggested by Ellison & Ramaty (1985)

shock thickness ~ κ/u energy is too low

drift over shock width rollover at ~ 100 MeV/Q

finite time for shock acceleration considered here

(see also: Klecker et al. 1981; Lee 1983)

Why do ESP spectra roll overat ~ 0.1 - 10 MeV/n?

(data - see also: Gosling et al. 1981; van Nes et al. 1985)

Page 7: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

7

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Finite-Time Shock Acceleration Probability approach (like Bell 1978, Drury 1983) Acceleration rate, r = 1/Δt Escape rate, Time at present (age of shock), t

Simulation parameters: λ = λ0 (P/ MV)α so vary λ0 and α (shorter λ0 is

equivalent to longer time duration) Time t fixed by observations, v0 = 200 km/s in

wind frame, shock angles & speeds as observed.

Page 8: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

8

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

We solve the PDE …

… discretized as a system of ODEs

Initial & inflow conditions correspond to the observed ambient seed spectrum

Page 9: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

9

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

(well above injection energy)

λ = const. Ec /A ∞ t2, independent of Q/A

λ ∞ Pα

Ec /A ∞ t2/(α+1) (Q/A)2α/(α+1)

Rollover energy (Ec /A)

Page 10: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

10

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

We use the FTSA model to fit 3 ESP events from the sample of

Desai et al. (2004):

Page 11: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

11

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Event #3: λ0 = 0.24 AU, α = 0.18

• λ is consistent with typical IP values• FTSA rollover is at lower E, minor accel. of seed population

Page 12: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

12

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Event #2: λ0 = 0.042 AU, α = 0.10

• λ is smaller but not inconsistent with IP values• FTSA rollover is at lower E, moderate accel. of seed population

Page 13: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

13

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Event #1: λ0 = 4.0x10-3 AU, α = 0.07

• λ at shock is much lower than typical IP values …• … as expected for proton-amplified waves [Ng et al. 1999]

• model rollover is sharper than observed, probably due to use of spatially const. λ

Page 14: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

14

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Fe/O ratios

• Fe/O lower at shock, due to higher λ for Fe• model does not match observed trend for Event 2• expect trend vs. E like seed population above the rollover

Page 15: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

15

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Conclusions on ESP spectra …

1. Finite-time shock acceleration model• power law spectrum at low energy• faster dropoff at high energy

2. Expect Ec /A ∞ t2/(α+1) (Q/A)2α/(α+1)

3. For 3 events, able to simultaneously fit measurements

of C, O, and Fe ions

4. Fits to weak events: Infer λ as typical IP values

5. Fit to strong event: Infer much lower λ, consistent with

expectations for proton-amplified waves

Page 16: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

16

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

… but wait – there’s more!Key processes of interplanetary transport

• Scattering• Focusing (a.k.a. mirroring)• Solar wind effects

- Convection- Adiabatic deceleration

Note: mean free path is ~ 0.1 to 3 AU

Aim to quantitatively explain profiles of intensity & anisotropy vs. time

[Jokipii 1966]

[Roelof 1969]

[DR 1995]

Page 17: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

17

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Pitch-angle transport equation [DR, ApJ ’95]

Page 18: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

18

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Fitting SEP data- Simultaneous fit to intensity vs. time anisotropy vs. time- Optimal piecewise linear injection (least squares)- Optimal scattering mean free path, λ [Ruffolo et al. 1998]

- Optimal magnetic configuration [Bieber et al. 2002]

Simulation of interplanetary transport- Specify magnetic field configuration- Solve PDE- Runs in a few minutes [Nutaro et al. 2001]

Page 19: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

19

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Magnetic Configurations

Page 20: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

20

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Results of fitting GLE data(relativistic solar protons)

Bastille Day: July 14, 2000 - magnetic bottleneck [Bieber et al. 2002]

Easter: April 15, 2001 - full Spaceship Earth network, 1-minute timing of injection [Bieber et al. 2004]

October 22, 1989 - injection along both legs of a closed interplanetary loop [poster, this meeting]

October 28, 2003 … well, we don’t claim to understand everything … [Bieber et al. 2005]

January 20, 2005 - possible effect of self-generated waves: nonlinear transport! [poster, this meeting]

Page 21: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

21

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Comparison with EM timing

All times are “Solar Time” or UT minus 8 min. for EM emissions

EMISSION APR. 15, 2001 OCT. 28, 2003

START PEAK END START PEAK END

Relativistic Protons 13:42 13:48 11:03 11:41

Soft X-rays 13:11 13:42 13:47 10:52** 11:02 11:16

H-alpha 13:28 13:41 15:27 09:53 11:57 14:12

Type III radio burst 13:36 13:38 - -

CME liftoff* 13:24-31 10:53-58

Type II radio burst 13:40 13:47 10:54 11:03

Type IV radio burst 13:44 14:57 10:25 15:23

* Linear - quadratic fits ** Sudden onset of intense emission

[Bieber et al. 2004] [Bieber et al. 2005]

Page 22: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

22

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

“halo” of low SEP density over wide lateral region

“core” of SEP with dropouts

[DR, Matthaeus, & Chuychai 2003]

Page 23: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

23

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Thank you for your attention

ขอบคุ�ณคุรับ

Page 24: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

24

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Page 25: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

25

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

… and also in the spirit End-to-End Modeling of CMEs and SEPs:

See some posters!

87 DR et al. – Turbulence, dropouts, and suppression of the field line random walk

96 Bieber et al. – Record-setting Ground Level Enhancement: January 20, 2005

107 DR et al. – Relativistic Solar Protons on 1989October 22: Injection along Both Legs of a Loop

… and also someone else’s poster …

105 Mulligan et al. – validates our results for July 14, 2000!

Page 26: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

26

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Early observations [Bryant et al. 1962]

Page 27: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

Spectral Properties of Heavy Spectral Properties of Heavy Ions Accelerated by Ions Accelerated by

Interplanetary Shocks Near 1 AUInterplanetary Shocks Near 1 AU

M. I. Desai M. I. Desai University of Maryland, College Park, MD 20742, USAUniversity of Maryland, College Park, MD 20742, USA

Co-Authors: Co-Authors: G. M. Mason, C. M. S. Cohen, R. A. Mewaldt, M. E. G. M. Mason, C. M. S. Cohen, R. A. Mewaldt, M. E.

Wiedenbeck, J. E. Mazur, J. R. Dwyer, A. C. Cummings, E. Wiedenbeck, J. E. Mazur, J. R. Dwyer, A. C. Cummings, E. C. Stone, R. A. Leske, R.E. Gold, E. R. Christian, S. M. C. Stone, R. A. Leske, R.E. Gold, E. R. Christian, S. M. Krimigis, C.W. Smith, Q. Hu, R. M. Skoug, and T. T. von Krimigis, C.W. Smith, Q. Hu, R. M. Skoug, and T. T. von

RosenvingeRosenvinge

Spectral Properties of Heavy Spectral Properties of Heavy Ions Accelerated by Ions Accelerated by

Interplanetary Shocks Near 1 AUInterplanetary Shocks Near 1 AU

M. I. Desai M. I. Desai University of Maryland, College Park, MD 20742, USAUniversity of Maryland, College Park, MD 20742, USA

Co-Authors: Co-Authors: G. M. Mason, C. M. S. Cohen, R. A. Mewaldt, M. E. G. M. Mason, C. M. S. Cohen, R. A. Mewaldt, M. E.

Wiedenbeck, J. E. Mazur, J. R. Dwyer, A. C. Cummings, E. Wiedenbeck, J. E. Mazur, J. R. Dwyer, A. C. Cummings, E. C. Stone, R. A. Leske, R.E. Gold, E. R. Christian, S. M. C. Stone, R. A. Leske, R.E. Gold, E. R. Christian, S. M. Krimigis, C.W. Smith, Q. Hu, R. M. Skoug, and T. T. von Krimigis, C.W. Smith, Q. Hu, R. M. Skoug, and T. T. von

RosenvingeRosenvinge

Page 28: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

Upstream & IP shock Upstream & IP shock abundancesabundances

Solar wind & IP Solar wind & IP shock abundances shock abundances

0

1

2

3

4

1 2 3 4 5 6Mass/Charge (AMU e-1)

m = 1.22 ± 0.23

c = 0.40 ± 0.22

cu

2 =3.34; =1.45 10P x-3

= 0.43; =0.13r p

4He C

Mg

Ne

N

O

Si

S

Fe

GI = + *[c m MIQO/MOQI]

0.2

0.4

0.6

0.8

2.0

1.0

1 2 3 4 5 6Mass/Charge (AMU e-1)

m = -0.64 ± 0.05

c = 0.63 ± 0.04

=4.39;P=2.56x10-5

r = -0.92; p=7.8x10-5

cu

2

(logGI) = + *[c m MIQO/MOQI]

4He N

CO

Ne

MgSi

S

Ca Fe

(Desai et al. 2003 ApJ 558, (Desai et al. 2003 ApJ 558, 1149).1149).

Page 29: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

Upstream and SEP Abundances Upstream and SEP Abundances

(Desai et al. 2003 ApJ 558, 1149).(Desai et al. 2003 ApJ 558, 1149). Upstream and SEP Abundances Upstream and SEP Abundances

(Desai et al. 2003 ApJ 558, 1149).(Desai et al. 2003 ApJ 558, 1149).

Upstream Upstream

material material

comprises comprises

~30% ~30%

contribution contribution

from impulsive from impulsive

flares, and flares, and

~70% from ~70% from

large gradual large gradual

SEPsSEPs

Gradual SEPs

Impulsive SEPs

Upstream Material

10-2

10-1

100

C N O Ne MgSi S Ca Fe

12 1416 20 24 2832 40 56

Mass (AMU)

Page 30: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

Spectral Variability in IP shocks Spectral Variability in IP shocks

(Desai et al. 2003 to be (Desai et al. 2003 to be submitted to ApJ).submitted to ApJ).

Page 31: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

Fe/O Ratio at shock versus Fe/O ratio Fe/O Ratio at shock versus Fe/O ratio upstream upstream (Desai et al. 2003 ApJ vol. 558, (Desai et al. 2003 ApJ vol. 558,

1149)1149)

Fe/O Ratio at shock versus Fe/O ratio Fe/O Ratio at shock versus Fe/O ratio upstream upstream (Desai et al. 2003 ApJ vol. 558, (Desai et al. 2003 ApJ vol. 558,

1149)1149)

10-2

10-1

100

Fe/O (Upstream)10-2 10-1 100

log(Fe/OShock) = c + m*log(Fe/OUpstream)

cu2 =0.53; =1.0P

=62; =0.51; =1.0 10N r p x -5

= 0.40 m ± 0.02 = 0.26 c ± 0.05

#29event

Page 32: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

32

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

3. Particle acceleration in space:Shock acceleration

Page 33: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

33

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

0)(2 >−=Δ du uuv duv 2−=Δ duv 2−=Δ duv 2−=Δ

Fundamental mechanism of shock acceleration

Following collision with a scattering center: lose energy

Head-on collision with a scattering center: gain energy

Since u1 > u2 there is a net gain in energy

Page 34: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

34

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

)()( tTeeTP tT −+= −− δ

Poisson distribution for n acceleration events with accel. rate r

Distribution of residence time T for particles with escape rate

Overall probability of n acceleration events after time t

t is time at present T

T = t

!/)(),( nerTTnP rTn −=

∫=t

dTTPTnPtnP0

)(),(),(

tT ≤P(T)

r, constant w/ energy - combinatorial model

Page 35: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

35

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

trn

nk

ktr

n

en

rt

k

tre

r

r

rtnP )(

1

)(

!

)(

!

])[(),(

+−

+=

+− ++

⎟⎠

⎞⎜⎝

⎛++

= ∑

Using r=0.9 & =0.1 ...

n

r

r

rtnP ⎟

⎞⎜⎝

⎛++

),(

T < t (temporary residents)T = t

(permanent residents)

Page 36: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

36

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

(related to log p)

Page 37: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

37

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

(related to log p)

Page 38: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

38

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

(related to log p)

Page 39: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

39

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

(related to log p)

Page 40: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

40

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

(related to log p)

Page 41: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

41

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

(related to log p)

Page 42: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

42

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Application to an interplanetary shock:

What if r vary with time? Physical characteristics of a shock change greatly as it

moves out from the Sun Observations: high energy particles are accelerated only

when shock is near the Sun Near Sun: tacc (=1/r) was low, t /tacc was high, spectrum

does not roll over until high energy (rollover mechanism not clear)

Interplanetary space: tacc greatly increased Effectively decouple SEP, ESP acceleration

Page 43: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

43

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

r, varying - ODE model

Analytic solution:

),(),(),( tnAtnEtnP +=

),(/),(

),()(),1(/),( 1

tnAdttndE

tnArtnArdttndA

n

nnn

=+−−= −

0)0,(,0)0,1(,1)0,0( ==≥= nEnAA

Page 44: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

44

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

More model parameters ...

… after Drury (1983)

Page 45: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

45

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Numerical Results

t / tacc =

Page 46: 1 July 14, 20052005 SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time

46

July 14, 2005 2005 SHINE Workshop Keauhou, Hawaii, USA

Four Lines of Work:

1. Particle Acceleration

2. Magnetic Turbulence & Effects on Particle Transport

3. Detection/ Data Analysis4. Earth

Effects

CME