1 global snowcover distribution once snow reaches the ground, it may accumulate into a snowpack. the...

44
1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large- scale spatial extent of a snowpack is commonly referred to as the snowcover. Snowcover commonly occurs at higher latitudes and altitudes since near or below freezing temperatures affect both the frequency of occurrence of snowfall and the probability of snowmelt; thus its duration is longest near the poles and on high mountains.

Upload: anis-gaines

Post on 12-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

1

Global Snowcover Distribution

• Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly referred to as the snowcover.

• Snowcover commonly occurs at higher latitudes and altitudes since near or below freezing temperatures affect both the frequency of occurrence of snowfall and the probability of snowmelt; thus its duration is longest near the poles and on high mountains.

Page 2: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

2

• Antarctica is a dominant feature since it covers an area of approximately 14 million km2, making it a major factor in the thermal and moisture balance of the earth.

• Snowcover can be classified as perennial or seasonal. A perennial snowcover is found over the Antarctic and Greenland ice sheets, as well as on Arctic and alpine icefields and glaciers.

Page 3: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

3

Source: G

ray and Male (1981)

Page 4: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

4

• About 98% of the seasonal snowcover occurs in the Northern Hemisphere. It ranges from a maximum of about 45 million km2 in winter to a minimum of 3 million km2 in summer.

Page 5: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

5

Page 6: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

6Source: Masuda

Page 7: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

7

• Generally the depths of snowcover in continental interiors north of 50oN and in polar areas range between 40 to 80 cm.

• However, this is not universal since snowcover depends on topography and geographical location, e.g., in mountainous regions of Norway and Southern Alaska average depths exceed 120 and 180 cm, respectively.

Page 8: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

8

• Mean maximum snow depth in Canada is > 160 cm in parts of Newfoundland and Labrador, with even higher values (> 320 cm) in B.C.’s Coast, Columbia, & Rocky Mountains.

• In addition to depth and density, the dates (time) of occurrence and disappearance and the duration of snowcover are important factors for human activities, particularly in the Northern Hemisphere.

Page 9: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

9Source: Gray and Male (1981)

Page 10: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

10

Source: G

ray and Male (1981)

Page 11: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

11

Source: G

ray and Male (1981)

Page 12: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

12

Source: G

ray and Male (1981)

Page 13: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

13

• At most locations snowcover may form and disappear several times a season; in other words, the snowpack is intermittent.

• At high latitudes a long period of winter snowcover is virtually assured (exceeding 182 days in continental areas north of 60oN), but at the onset and end of winter, and even into summer, snowcover may form briefly before melting.

Page 14: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

14

• This indeterminate period occurs throughout the winter in milder climates having small seasonal accumulations.

Page 15: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

15

Regional Snowcover Distribution

• Climate, physiography and vegetation interact in a complex manner to govern snowcover accumulation and distribution.

• Simple zonation by vegetation is often useful for interpreting snowcover maps and data.

• This procedure is often effective because the type of vegetation is frequently indicative of climate.

Page 16: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

16

Source: G

ray and Male (1981)

Page 17: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

17

Tundra

• In the tundra zone, with the exception of permanent snow fields, the average period of snowcover on land surfaces ranges from eight months to over ten months in high latitude regions of Greenland and Ellesmere Island.

• The actual mean dates of occurrence and disappearance are difficult to define and measure and are highly variable from year to year.

Page 18: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

18

• Generally, snowcover forms in late September or early October and disappears by June while the maximum accumulation occurs in February, March or April.

• Although the snowfall distribution throughout the tundra zone may be considered as being regionally uniform, the snow is quickly redistributed by wind (“drifting and blowing snow”).

Page 19: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

19

• Scour and sedimentation of graupel and ice needles produces a cover which may be highly variable in density and depth with numerous exposed areas, drifts, dunes and sastrugi.

• The eroded snow accumulates along the upwind sides of valleys and along the edges of airflow obstacles, such as shrubs or rocks.

• The average density of snowcover in this zone is usually taken to be 300 kg m-3 (or greater) over most of the season.

Page 20: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

20

Taiga and Boreal forest

• During October, the area of snow cover moves rapidly southward to include most of the taiga and boreal forest except those parts influenced by a maritime climate.

• In North America, the average duration of snowcover in these zones is 200 to 240 days in the far north and 120 days at their southern limits with the maximum depths occurring in February and March.

Page 21: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

21

• However, the dates of occurrence of maximum depths throughout the region vary widely from season to season and between clearings and forests

• Since most weather stations are located in cleared areas, their reports probably provide early estimates.

• In Canada the mean maximum depths of accumulation range from 50 to 150 cm depending on the land form and proximity to the open sea.

Page 22: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

22

• The snowcover within the evergreen forest differs from that in the tundra and grasslands. Forest cover intercepts falling snow, serves as a wind break and shelters the snowcover from solar radiation, thereby extending its duration, and resulting in less compacted formations.

• The average densities of snowcover in these regions are much lower than that in tundra, namely 170 to 210 kg m-3 during most of the non-melt period.

Page 23: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

23

Grassland and Steppes

• Snowcover usually forms on the colder, continental grassland plains and steppes in November.

• In Russia, a permanent or semi-permanent snowcover does not form until December in the Urals, whereas in the southern Great Plains of North America, the cover becomes permanent in December or January.

Page 24: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

24

• Estimates of the date of formation and the probability of permanent snowcover are quite unreliable in the southern extremity of this zone.

• These characteristics are largely dependent on air temperature. Over the cold northern grasslands snowcover persists for 120 to 160 days.

• In Oklahoma and the Southern Ukraine it lasts from 30 to 60 days, but over central Texas only for a few days.

Page 25: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

25

• The grassland snowcover is fairly shallow and well-drifted, but nevertheless is rather uniform spatially, being broken by local variations in topography and vegetation.

• Shelter belts and buildings may cause massive drifts whereas adjacent fields may be relatively free of snow.

• Also, depressions and eroded areas fill with well-packed snow. The mean annual accumulated depths of snowcover in this zone mainly fall in the range from 20 to 50 cm.

Page 26: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

26

• The density of the prairie snowcover is ~ 200 kg m-3 throughout most of the winter increasing slowly with time because of metamorphic changes up to the time of active melt (about March 15) when the changes are marked as melt progresses.

Page 27: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

27

Blizzards

• A climatological feature of particular interest in both the grasslands and tundra zones is the blizzard or ground blizzard.

• In Canada, for a storm to be categorized as a blizzard requires the co-existence of 40 km h-1 winds, an air temperature equal to or lower than -12oC (or high windchills of 1600 W m-2) and visibilities < 1 km which last for a duration of several hours.

• Such conditions can lead to massive, hard drifts.

Page 28: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

28

Oke (1987)

Page 29: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

29

Mixed forest

• The most extensive mixed forest zones are in eastern North America, south of 35oN; along the Pacific Coast; and in regions of Europe west of 10oE with low elevations.

• Snowcover usually forms in late November and December and recedes in two directions; from the south in mid-February, and from the north in late March or early April.

• Predictions of snowcover duration are unreliable since the cover does not remain on the ground for long periods.

Page 30: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

30

• In this zone, because of its mild climate and sheltering effect against wind action, the snowcover tends to be moist, except at high elevations and during periods when cold outbreaks follow snow storms.

• The average snowcover density is ~ 200 kg m-3 in mid-winter increasing progressively over the winter to ~ 300 kg m-3 by late March.

Page 31: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

31

• Freeze-thaw cycling of air temperature, freezing rain and drizzle are common and produce hard crusts, ice layers and crystalline changes within the snowcover.

• One feature of the Great Lakes Forest climate is the “lake effect’’ storm which deposits massive amounts of snow over fairly small areas downwind of a lake.

• For example, the areas near Buffalo and Oswego, N.Y. are seriously affected by such storms which originate from the Great Lakes are also marked by gale force winds and blowing snow.

Page 32: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

32

• One extreme event occurred in 1966 which saw an accumulation of 257 cm of snow over a 5-day period in Oswego, New York

• The snow belts which occur to the south and east of each of the Great Lakes can be largely attributed to lake effects.

Page 33: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

33

Source: G

ray and Male (1981)

Page 34: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

34Source: NASA

Page 35: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

35

Mountain areas

• Snow exists on high mountain tops every month of the year, at elevations which vary with latitude and climate.

• The snowcover on rugged terrain above tree line is highly heterogeneous because of its exposure to avalanches and wind action.

• At the higher elevations tundra conditions prevail and the snowcover undergoes severe erosion and wind packing which may result in the formation of slabs.

• With decreasing elevation the type of forest changes gradually from coniferous to deciduous in phase with the climate.

Page 36: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

36

U

L

R

Castle Creek Glacier

Page 37: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

37

Upper Castle Creek Glacier

Page 38: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

38May 5, 2009

Lower Castle Creek Glacier

Page 39: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

39Aug. 5, 2009

Page 40: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

40

Evolution of snow accumulation & blowing snow frequency at upper Castle Creek

Glacier

Déry et al. (2010)

Page 41: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

41

Evolution of winds, snow accumulation, & blowing snow frequency at Castle Creek Glacier

Déry et al. (2010)

Page 42: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

42SWE (mm)

Page 43: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

43

Browntop Mountain

Page 44: 1 Global Snowcover Distribution Once snow reaches the ground, it may accumulate into a snowpack. The large-scale spatial extent of a snowpack is commonly

44