#1 effect of wellbore storage and damage on the transient pressure behavior of vertically fractured...

Upload: kasaipratama

Post on 01-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 #1 Effect of Wellbore Storage and Damage on the Transient Pressure Behavior of Vertically Fractured Wells.pdf

    1/8

    S

    SPE6752

    EFFECTOFWELLBORETORAGENDDAMAGE

    ONTHETRANSI ENTRESSUREEHAVI ORF

    VERTI CALLYRACTUREDELLS

    by HeberCi nco- Leyand Fe?nandoSamanl egoV. ,

    Members SPE-AIME, I nstf tutoMexi canodel Petrol eo

    s Copyright1977,AmericanInstit uteof Mining,Mst aihrrglcal .nd PetroleumEn;meera,Inc.

    Thispaperwaspresent edatt he52ndAnnualFallTechnicalConferencendExhibit i onof theSocietyof PelroleumEflgineersf AIME,heldin Denver,Colorado,Ott. 9-12,1977.Thematerialc ‘ i ’bj ect’ t o

    correct iony theauthor.Permiss ionto copy is restr ic tedoan abstrac tof notmoret han300words. Wri te :6200 N. Centra lExpy,Dal laa,Texas75206.

    ABSTRACT

    wellborestorage,and suggesteda matchingtechniue

    8for analyzingpressuredata. Recently,Raghaven2

    -A modelrecentlyp?esentedby Cincoet al.for discussedpressureanalysistechniquesfor

    the transientpressurebehatiorof wellswith finite

    verticallyfracturedwells,includingthe effectsof

    conductivityverticalfractureswas moafled to

    wellborestorageand skin.

    He assumedthe fracture

    includethe effectsof wellborestorageand fracture

    to be of uniformflux,andpresentedgeneral

    damage.

    An infinitesimalskinwas consideredaround

    characteristicsf the pressuretransientbehavior

    thefracture,end it was handledas a dimensionless

    for tinesesystems.

    factordefinedas (aK/2)wd/Xf)[(k/kd) 1].

    The puxposeof this studyis to preL3ent

    It was foundthatthewellbehavioris

    solutionsfor the transientwellbme pressm:e

    importantlyaffectedby the fracturedamage.

    When

    behaviorof swell crossedby a finiteconductivity

    plottedas a functionof log ~D vr3lot tD for short

    times,resultsshowflat,almosthorizontallines

    verticalfracture,consideringthe effectof a

    dsmagedzonearoundthe fracture.nd wellbore

    that laterbecomeconcaveupwardcurvesasymptotic-

    storage. It is alsointendedto showthe general

    ally approachingthe curvefor undamagedfractures,

    flow characteristicsf thesefracturedsystems.

    Thisbehavioris shownevenby slightlydamaged

    fractwes. It alsowas foundth&t important

    MATHFMKJTCALMODELSANDMEWHOLBOF SOLUTION

    iidlmmation

    aboutthe fracturecharacteristicsay

    —.

    not be determinedwhenwellborestorageeffectsare

    The transientflow towardawell with a finite

    present.

    conductivityverticalfracturesurroundedby a

    INTROIUCTCON

    damagedzonewas studiedby usinga modifiedversio

    of the modelpresentedby Cincoet al.lg The

    followingassumptions\;ereconsidered.

    It has been shownthat the increasein the

    productivityofswell createdby hydraulic

    1. An infinite,homogeneou~,isotropic

    fracturingdependson fracturecharacteristics,l-k

    reservoirof permeabilityk, porosityo, and

    suchas fractureconductivity,ength,penetra-

    thicknessh.

    tion,5?6and alsoon a possibledamageto the

    formationimmediatelysurroundingthe fracture.sfy

    2. The formationis producedthrougha

    Duringthe last few years~therehas been a

    verticallyfracturedwell.

    ‘fhewellboreis inter-

    continuouslyincreasinginterestin thedetermination

    sectedby a fullypenetratingvertical.ractureof

    of the characteristicsnd orientationof fractures

    permeabilitykf?porosityof, widthw, and half-

    by meansof trsnsient’pressurenaIYSiS,6-20Mostof

    lengthxf. All productionof fluidis via the

    tkse methodsconsiderthe fractureto be of

    fracture.

    infiniteconductivityor of uniformflu%;others

    3. Therejs a zoneof reducedpermeability

    considerfiniteconductivityractures.

    Generally,

    thesemethodsassumethatthereis no skindamage

    causedby fracturingfluidloss aroundthe fraoture

    This regionhas a permeabilityksandwidthws.

    aroundthe fracture.

    Evens14proposeda pressure

    analysistechniqueconsideringfractureSW damage.

    4.

    The porousmediumconttis a slightly

    He assumedthe flowfromthe formationto the

    compressibleflulclof viscosity and cmpresslbili

    fractureto be linear,passingthroughtwo porous

    c.

    mediain series,onebeingthe damagedzonearound

    5,

    All formation,fractureend fluidproperti

    the fractureand the otherthe undsmagedformation.

    are independentOf pressure.

    Ramey end Gringarten17discussedthe transientwell

    behaviorof verticallyfracturedwellgwith large

    6. Gravityeffectsare negligibleend pressus

    Referencessnd W&trations at end of paper.

    gradientsare smalleverywhere.

    ..

  • 8/9/2019 #1 Effect of Wellbore Storage and Damage on the Transient Pressure Behavior of Vertically Fractured Wells.pdf

    2/8

    E~~EcTOFwELLB ORE” sTORA GEA NDD~AGEONTHE”

    2

    TRANSI ENT PRESSUREBEHAVI OROF VERTI CALLYFRACTUREDWELLS SPE 6752

    ‘ ?.

    Initially,the pressureis uniformthrough-

    out the system.

    k h (pi- Pwf)

    8. Thewellborehas a finitestoragecapacity.

    Pw =

    141.2qB~ * “ “ “ “ “ “   “ “

     

    D

    The systemabcvedefinedis shownin Figs. 1

    aiid2, andwas dividedintofourparts:

    (1)well-

    bore,(2)fracture,(3)damagedzonef~d (4)WI-

    ~ =o*ooo264kL , ,   . . .  

    damagedformation.

    D

    6P Ct Xfz

     

    The followingdescribesthe flowmodelsfor

    eachof the systemcomponents.

    WellboreStorageModq&

    The transientpreseurebehaviorof a well when

    ~=n fects are

    presentcan be obtainedfromthe

    ‘D

    ‘wD(tD) = Jo [1 - CD

    d ‘~.(’)] [~ ‘tD

    D

    T ] dT ,. . . . . . . * .  

    1

    wherepwn

    endpD areth(.cibwensionl.essellborepres-

    V

    sureswith andwithoutwclLborestorageeffects?

    respectively.tDis the dimensionlessime,andCD

    representsthe wellborestoragecoefficientin

    dimensionlessorm.

    A discretizationofthe integralinEq. 1

    allowsus to solveforpw as follows.

     

    u“

    I

    p (tD)=

    .

    ‘D n

    CD PD (tD - ‘Dn ,)

    [(1+ (~ -:

    - )]

    Dn Dn ,)

    and

    c

    cD=2Tt hctxf2 -”” ““”’”’”

     

    FractureFlowModel

    The fractureis consideredas a porousmediu

    of heighth, half-length~, widthw, and with

    propertiesas statedbefore. Thewell flowrate

    is simulatedby a planesourceof lengthw and

    heighth locatedat thewellborecenter. i??uidi

    enterin fromthe formationto the fractureat a

    f

    ate qf x?t)

    per unitof fracturelengthfas show

    in Fig.3.

    The pressurealong%he fracturemay”~ecompu

    from

    kh (pi- pf)

    141.2 q B u

    ‘Pf XD, t D,

    A, Bf,

     

    c

     

    D

    wherepf is definedby Eq. 3 of Ref. 19;~ is t

    D

    dimensionlessdistancealongthe fracture;tD is

    dimensionlessimedefinedin E@. 4, and A sndB

    the correlatingparametersof the solutiondefin

    Cincoet

    EQ. 19:

    {CID,PD (tD ) -::: (qD - qD

    w @ff Cft

    )PD(tD-tD )

      xf~ct

     

    . . .

    .

    n i i+l

    n

    i +- 1

    Pw (tD ) kfffct.

    - qD

    pD :tD- tD

    n-1 y

    )+[l+cDg-~J

    B4=

    ~“ “ “ “ “ ” “ “ “   “ “ “ “  

    n-2

    n n-1

    n

    n-1

    Fq. 6 includesA andB’becausethepressurebehav

    “-PD@Dn- ‘Dn-l

    )}, . . . . . . . . .

    of the systemdependsupon thepropertiesof boti

    . . (2)

    fractureend the formation.

    where

    [PWD ‘ D “D~-~]

    tD)-P

    .

    ‘Di

    1

    - CD

    .

    ‘Di - ‘Di-l

    pwD(tDi)~dPD(tDi) me the ~mensiofless’press~es

    &t dimensicxil.essimet ..

    %

    The limitationsof thismodelare discussedby

    CincoandSsmsniego.22It was foundthatresults

    accurateenoughfor matchingpurposescan he obtained

    by-usingthismethodof solution.

    When thistechniqueis appliedto the case of

    fracturedwell,the dimensionlessariablesare

    definedas

    “..,.-.

    It is convenientto exyressthe flowrateof

    fluidgoingfromthe formationto the

    fraC W?? q

    in dimensionlessorm?qf ? as

    D

    2 qf Xf

    q.-

    (xDttD) =-

    ‘D

    q ‘“

     

    “ “ “

     

    “’”

     

    Desnajzed-ZonelowModel

    F??actures consideredto be surroundedby a

    zoneof widthW9 and permeabilityk= lessthanth

    formationpermeebilityk. Sincethe fluidflowi

    from the formationto the.fracturehas to go thr

    thtszone,

    a>

  • 8/9/2019 #1 Effect of Wellbore Storage and Damage on the Transient Pressure Behavior of Vertically Fractured Wells.pdf

    3/8

    SPE 6752

    HEBERCINCI - LEY AND FERNANDOSA 4ANI EGOV;

    3

    damaged zone. Fq. 10 may be obtainedby combining

    19 Or.cethe fl

    roceduredescribedbyCinco et al.

    two equationsfor pressuredropacrossthiszone;

    rateqf as a functionof ~~d~D is known,the

    the firstone considersthe undamagedformation

    characteristicsnd the secondone usesthe proper-

    dimensi%lesspressuredropat the wellborepf (~

    ties of thedamagedregion.

    O, t ) canbe computed.

    8

    Wellborestorageeffe%s

    Eq. 10 in dimensionlessormbecomes

    incl ded in the solutionby apply+nglkI.2 to the

    wellborepressurepf

    (~ = o, tD .

    kh~p

    IT ‘d k

    D

    llpD=

    s

    ——

    = qfD(xD* ‘D) 2 Xf

     ~

    - , 1

    141.2 q BP

    Discussionof Results

    s

      **.***   *****.   O****>

    (11) To studythe generalcharacteristicsf the

    transientflowbehaviorof swell intersectedby a

    Althoughthisequationwas obtainedby con-

    finiteconductivitydamagedfracture,severalcas

    sideringstead~stateflow~it can be ueed %0 compute

    were solved.

    the extrapress~e

     op caused

    by the damagedregion

    in the transientflow towarda fracturewhen the

    Figs. 5, 6,

    7 showgraphsof logof

    damaged-zoneidtinis small. Thisis becausedura-

    dimensionlessellborepressurepw vs logof dim

    tionof transienteffectsin thisregionere a func-

    ?

    ticvlof wd*

    sionlesstime tD, for valuesof (w f)/(fix+c)qua

    0.2, 2, :nd 100,respectively. Resultsarepre-

    ~. 11 showsthata zoneof va..iableidth end

    sentedin eachof thesefiguresfor severalvalue

    a veriableflow rate alongthe fracturemay be

    of fractu?edemagefactorsfs.

    In thesecases,t

    handled.

    widthof the damagedzonewas takenas uniforman

    the valueof the damagefactorconsideredwere0,

    FormationFlowModel

    0.01,0.02,0.1,0.2 and 1. It canbe seenfrom

    of thesegraphsthat,for shorttimes,the curves

    The reservoiris of infiniteextentin the behaveas horizontallines,and for largevalues

    radialdirection;the characteristicsf the forma-

    time,thesecurvesapproachasympototicel~rthe

    tionwccementionedbef?re. The flow towardthe

    undamagedfracturecasefrom above;thisbehavio

    fracturecan be simulatedby a planesourceof flux similarto the resultspresentedby Raghavanfor

    qf (x~t)and lengthxf as shownin Fig.4.

    case of uniformfluxfractureswith skindamage.

    low fractureconductivity(Cr. 0.2)the valueso

    Thepressureat anypointin thereservoircan

    p ~ 3n the horizontalregionof the curvesare sl

    be calculatedby the equation:

    g~eaterthan the fracturedamagefactor;however

    kh (pi-

    for highfractureconductivity(Cr>100) thepwD

    P(X,y, t))

    141. 3 q B IJ

    = P* xD, YD1 tD *

    valuefor thisperiodis equalto the fractureda

    (12)

    factor. Thisis becausefor shorttimesfluxis

    .*,**.*   *.****   *****=

    unifermalonga highlyconductivefracture. Anot

    where~andyD=e the fimensiotiessbscissaand

    interestingfeature

    s

    thatthe log-loggraphsof

    the solutionsshowcurvesof differentshapesfor

    ordinate,respectively.

    and high conductivityfractures;thus,if format

    permeabilityis known,and the transientpressur

    The PD functionof ~. 12was definedby Eq. 5 datafor a longperiodof timeaxe available,a

    in Ref. 19

    roughestimate’ofthe fractureskindamagefacto

    may be obtainedby a type-curvematchingtechniq

    Methodof Solution

    A furtheranalysisofthe results(notshownhere

    showsthat if the solutionsarepresentedin a gr

    The reservoirand fractureflowmodelscan be

    of p~D vs log t~t straightlinesof slope1.151a

    coupledby consider.

    Y

    thatthepressuredrop elong

    obtaznedfor largevaluesof tw

    Thus,the comm

    the fractureApf(X,t

    is equalto the pressuredrop

    semilogerithmicethodscanbe used to analyzelo

    alongthe plane sourceAp(x, y = C, t in the reser-

    1

    timepressuredata.

    Resultsalso showthatthe

    voir,pla3 the preesuredropAp5(x,t causedby the

    extradimensionlessressuredropat thewellbor

    damagedzone. Thismaybe expressedin dimeneion-

    causedby the fractureskindamageis constantfo

    lessformas

    largetimes,andit is greaterthanthe fracture

    Pfd(xDt

    tD, A, B) = PD XD, YD

    factordefinedbefore.

    =o, tD)-i-qf(xDrtD)sf~ ,.. ,,, ,.(13)

    It is of interestto know the effect”offrac

    D

    skindamageon the stabilizedflux distributiona

    the fracture. Figs.8 snd 9 showthiseffect. I

    where

    canbe seenfrom thesegraphsthat,in general,f

    IT

    w~(xD) k

    ture skindamagemakesthe flux distributionmore

    %=T

    Xf (~- ‘)’

    uniform*

    Fig. 8 showsresultsfor Cr = 0.2tand

    9 presentsresultsforCr= 100.

    By doingthis;the damagearoundthe fracture

    ““

    It shouldbe pointedout, as mentionedbefo

    has been hendledas an infinitesimalskin. It csn

    that the

    results

    for transientpressurebehavior

    be Seen from the E@. 3 end 5 inRef, 19 thatpf, m

    d

    .fracturedellswith skinckmagepresentedhere a

    pD are functionsof qf

    D (~~ ‘D); thuss~“ 13 D

    + A comple;esetof graphsfor eeverelVZIUeSof

    constitutesan equationwith orlyone unknown:

    (wkf)/(fix+c)anbe obtainedupon requestto the

    clfD(~, LD).

    Thisequationcanbe sol:’edy the

    authors.

  • 8/9/2019 #1 Effect of Wellbore Storage and Damage on the Transient Pressure Behavior of Vertically Fractured Wells.pdf

    4/8

    .

    EFFECTOF WELLBORESTORAGEAND DAMAGEON THE

    4

    TRANSI ENT PRESSUREBEHAVI OROF VERTI CALLYFRACTUREDWELLS SPE

    valid onlywhen thewidthof the damagedzoneis very

    small.comparedwiththe fracturelength. The preseurt

    behaviorwhen the widthof thedamageis largewillbc

    diecussedlater.

    The effectof wellborestorageon the transient

    behaviorof a fracturedwell is ehownin Figs. 10 and

    11, Fig. 10 showsa graphof log pwDvs log tD for

    the caseof undamagedfractmes. Resulte=e

    presentedfor valueeof the dimensionless

    llbore

    storageconstant

    c f ewd ~ O lo-4t 10- t lo-2f

    ?

    nd I&l. Cincoe_ sl.20presentedthisgraphfor

    CM = O and tD 2 10_~snd suggeeteda ~.pe-c~e

    matchingtechniqueto analyzetransientpressuredata

    however,if pressuredataof fracturedwellsin low-

    permeabilityformation,or wellswith very largefrac-

    tures haveto be analyzed,datafor very emallvalues

    of dimensionlessimeare necessary.

    It csnbe seen

    fromFig. 10 thatfor smallvaluesof tD, for the

    caseof cDf

    = O, thepressure.-timeurvesgive

    straightlinesof slopeequalto one-fourth.

    Analysi:

    of thiefact showsthatthisbehaviorcorrespondsto

    the periodwhen almostall fluidgoingto thewell-

    borecomesfromthe formationend fracturetip effect

    are not felt.

    CincoandSsmeniego23presenta rigor-

    ous analyticalproofof thisbehaviorandconclude

    thatpressuredatafromthisperiodmaybe usedto

    determinefracture-formationharacteristics.How-

    ever,if wellborestorageinfluencesthe test,this

    kind of informationmay,notbe obtained.

    A comparisonof thebehaviorof damagedend

    undemagetfractureschowsthat fractureskindamage

    may be detectedwhenthe slopeof the log-logcurve

    of nressuredata,at smallvaluesof time?is less

    thanone-fourth.Althoughthe curvesfor undamaged

    fractureswithintermediatevaluesof Cr (1s CrS50

    approachthe infiniteconductivitysolutionfrmm

    above~as do the curvesfor damagedfractures,they

    neverhave a slopeless thanone-fourthat small

    valuesof time. However,if short-timepressuredata

    for a testarenot available,

    erroneous

    conclusions

    may be reachedsincea finiteconductivityfracture

    may be takenas an infiniteconductivityfracture

    with a skindamage.

    Resultsin Fig. 10 alsoshow thatthe half

    slopeperiodlengthfur highlyconductivefractures

    (C{> 100)dependsor~Crvelues. This graphindi-

    ca es thatwellborestoragegreatlyM.fectsthe

    transientpressurebehaviorof fracturedwells. For

    shorttimesthereis a wellborestoragedominated

    ‘flowperiodcharacterizedy etraightlinesof slope

    one;followingthereis a transitionperiodwhose

    durationdependson the Cr andCDf values,andlater,

    the pressurebehavioris not effectedby wellbore

    storage. In genwal the curveshave different

    shapes;thus,Fig. 10 can be ueedto

    anslyze,tran-

    sientpressuredataby atype-curvematchingtech-

    Kique.

    Problemsof uniquecharacterizationay

    arisewheninsufficientpressuredatamatchthe type

    curvein the regionof lineeof one-fourthslope;

    however,the graphmay givethe timewhenwellbore

    storageeffectswe negligible.

    Transi.entreseurebehaviorfor the casesof

    fractureddemagedwel.lith wellborestoragea??’

    presented

    on Fig. 11,*

    It shouldbe realizedthat

    ~Ful.1-scaleraphsof logpwn Vs log t,D,including

    wellborestorageand fractureskin,maybe obtained

    upon request‘W the authors.

    therearemanypossiblecasesfor the differe

    combinationsof Cr, Sfs, andCDf so to showt

    generalbehavior,onlycasesfor Sfs equalto

    and for Cr equalto 0.2 and 100 are shown.

    Fo

    times,as elwsyeoccur,thereie a wellborest

    dominatedperiod

    after

    whichmayor may not be

    periodstronglyinfluencedby the fractureski

    damagedependinguponthe valueof Sfs.

    Up to now, discussionof resultshas cons

    a damaged

    zone

    aroundthe fractureof smallwi

    on the contrary,when thewidth

    zon e i s l ar ge

    well behavesat shorttimesas a fracturedwel

    withouta fractureskinend a fractureconduc

    Cr lessthenthe realvalue. Later,thewell

    as a fracturedwellwith en increasim?fractu

    ductivity(flat

    port ion ;

    end,finall~,for la

    timee,thepressurebehaviorof thissystembe

    equalto the infinitesimal.ractureskinsolu

    Thiskindof behavioris similarto thewellb

    for finiteandinfiniteimel skindiscuseedby

    9

    Wattenbargerand Ramey.4

    CONCLUSIONS

    Fromtheresultspresentedin thiswork,

    followingcommentsare important.

    1.

    The transientpressurebehaviorfor.

    fracturedwell is importantlyaffectedby well

    storageand fractureekindamage.

    2. Resultswhenplottedas a functionaf

    ~D vs log tD showthatevensmallfracturesk

    affectsthe pressuretimebehaviorat shortti

    producingflat,almosthorizontalcuxvesthat

    approachthe curvefor undamagedfractureasym

    ellyfromabove.

    3. Fractureskindamagemakeethe stabi

    fluxdistribution

    long

    the fracturemoreunif

    4. Fracturedamagecenbe estimatedrou

    from short-timedataby a type-curvematching

    niqueif fracturepermeabilityis knownandwe

    sLorageis negligible.

    50

    Pressuretimebehaviorin alogpwfDv

    tDpb% for a fracturedwellwith en undamage

    turemay exhibita one-fourthslopestraightl

    wellborestorageeffectsare negligible.

    6. For intermediatevaluesof time,the

    sientbehaviorof a wellwith a fracturecond

    Cr between1 end 50 is similarto the behavio

    wellwith a damagedinfiniteconductivityfra

    thus,erroneousconclusion aboutthe fractux

    systemcan be reachedif short-or long-timep

    data-e not available.

    i’. Tnw=ve - @s f orms- e

    dat

    the influenceof wellborestoragecan leadto

    uniqueinterpretationnlyif pressuredatado

    matchthe curveein the one-fourthslopestre

    region,

    8. For a bettercharacterizationf the

    turedeystem,it is of primeinterestto have

    estimateof the formationpermeability.

  • 8/9/2019 #1 Effect of Wellbore Storage and Damage on the Transient Pressure Behavior of Vertically Fractured Wells.pdf

    5/8

    CDK ~7K9

    UCRCD PTNf’fLl CV ANn CCQNllNllfl RAMANTFMI V

    R

    NOMENCLATURE

    I

    A = fracturestorageparameter,dimensionless

    B? =

    ratioof diffusivitiesf fractureend forma-

     

    tion

    B=

    formationvolumefactor,bb@TE

    CDf . dimensionlessellborestorageconstant

    c compressibility,si-l

    h = formationthickness,ft

    k = permeability,d

    p = pressure,psi

    qf =

    fractureflux density,STB/D-ft

    cl=

    wellflowrate,STB/D

    i .

    time,hours “

    . fracturewidth,ft

    w: = damagezonewidth,ft

    x,y = spacecoordinates,ft.

    ~ =half fracturelength,ft

    : =

    viscosity,cp

    = porosity,.raction

    D = dimensionless

    f

    . fracture

    i = initial

    S . damagedzone

    t = total

    w = wellbore

    1.

    McGuire,W. J. end Sibra, V. J.:

    l~~eEffect

    of Vertical.ractureE..{

    Well Productivity,”

    Trans.,AIME (1960)~, 401-403.

    2. —

    an Poollen,H. K., Tinsley,J. M., and

    Saunders,C. D.:

    Wydraulic Fracturing-

    FractureFlowCapacityvs Well Productivity,”

    Trans.,AIME (19%) ~, 91-95.

    ?. m. M.:

    wEffectof VerticglFractureson

    Reserbir Behatior-IncompressibleluidCase,”

    Sot.Pet.liim.J. (June1961)105-11’7.

    4. Jefigs, A. R. ~dLord~ DC L.: “Fracture

    FlowC~pacity

    - A Key to SustainedProduction

    AfterHydraulicFracturing,”paperSPE6127

    presentedat theWE-AIME 51stAnnualFall

    TechnicalConferenceend Exhibition,New

    Orleans,La.,Oct.3-6, 1976.

    5. Tinsley

    J.

    M.,Williams,J. R., Tiner,R. L.,

    ~d M~one, W. T.: ~WerticelFractureHeight-

    Its Effecton Steady-StateProduction

    Increase,’~. Pet.Tech. (MSY1969)633-638.

    6. Raghavsn,R.,Uraiet,A., end l%omastG. W.:

    l~vertics,l.ractureHeight: Effecton Tran-

    sient FlowBehavior,”paperSPE 6016presented

    at theWE-AIME 51stAnnualFall Technical.

    Conferencesndl?xhibition,ew Orleans,La.,

    oct. 3- 6, w76.

    7. van Poollen.H. K.:

    w~oductitityVS perme-

    abilityin H@raulicsllYReduced-Fractures~” I

    &L1l.”sndfiod. Prac.,-AF I1957)103-110.-

    8. Scott,J. 0.:

    fr,~~efect of VerticalFrac-

    tureson TransientpressureBehaviorof Wells,”

    J. Pet. Tech.(Dec.1963)1365-1369.

    9. Rusell.D. G. and Truitt,N. E.: “Transient

    Press&e Behaviorin VerticallyFractured

    Reservoirs,~l’J.et.Tech.(Oct.1964) “1159-

    1170.

    10. Lee,W. J., Jr.:

    wAnalyeisof Hydraulically

    FracturedWellsWith PressureBuildupTests

    paperSPE 1820presentedat theSPE-AIME42

    AnnualFall TechnicalConferenceand Exhibi

    tion,Houston,Tex.,Oct.

    1- 4, 1967.

    110 cl ~k, K. K. : YTransientPressureTestingo

    FracturedWaterInjectionWells,’8. Pet.Te

    (June1968)639-643.

    12. Wattenbsrger,. A. end Ramey H. J., Jr.:

    ‘WellTestInterpretationf VerticallyFra

    ~pd Gas Wells,”J. Pet.Tech.(May 1969)6

    .

    13. van Everdingen,A. F. and Meyer,L. J.:

    wfmlysis of BuildupCurvesObtainedAfterW

    Treatments,”. Pet.Tech.(April1971)513

    524.

    14, ~m9, J. G.: lTheUse of R’e99LU’euildup

    Informationto AnalyzeNon-Respondenterti

    callyFracturedOil Wells?”paperSpE3345

    presentedat ths SPE-AIMERockyMowtti

    RegionalMeeting,?2illings,ont.,June 2-3

    1971.

    15.

    Gringarten,A. C., Rsmey7H. JtsJr.9 and

    Raghaven,R.:

    t ~e99We A.nal.ysieor Frac-

    tWed wells,~~aperSPE 4051presentedat ‘

    S?&AIMEAnnusl.Fall TechnicalConferencee

    Exhibition,San Antonio,Tex.,Oct. 8-11,

    1972.

    ,16.Gringsrten,A. C., RemeypH. J.v Jr.p and

    Raghaven,R.:

    f?APPliedeseure Adysis ‘

    ~r;&ed Wells,”J. Pet. Tech. (J@J 1975)

    -*

    . .

    17. Ramey,H. J., Jr. and Gringarten,A. C*:

    t ~fectof High VolumeVerticalFractures

    O

    GeothermalSteamWell Behavior, ’aperpre-

    sentedat the SecondUnitedNationsSympos

    on theUse and Developmentof Geothermal

    EnergyrSan Francisco,Celif.,May 20-29,

    1975.

    18. Locke,C. D. snd Sawyer,W. K.: “Constant

    PressureJnjectionTestin aFractiared

    Reservoir-HistoryatchUsingNumericalSim

    tionsnd~e CurveAnalysis,’taperSPE 55

    presentedat the SPE-AIME50thAnnualF~

    TechnicelConferenceand~bition, Dalla

    Tex.,Sept.@-Oct. 1, 1975.

    19.

    Cin~o-Ley,H6ber,Ssmeniego-V.?., and

    Rmunguez-A.,N.:

    lt~~eient PressureBeha

    for a WellWith a FiniteConductivityVerti

    Fracture,”paperSPE6014 presentedat theS

    AIME Annuali%ll TechnicalConferenceend

    lMhibition,New Orleans,La.,Oct. 3-6, 197

    20. Raghavan,R.:

    tlsome~actica Considerat

    in theAnslysisof PressureData,”J. Pet.

    Tech.(Oct.1976)1256-1268.

    21. ~-al, R.”G.,A1-HussainY,R.t end mey~

    H, J*t Jr.:

    Wk Investigationf Wellbore

    Storue endSkin Effectin UnsteadyLiq~d

    Fiow:-1. AnalyticalTreatment,”Sot. Pet

    *R. J. (Sept.1970) 291-297,

    22. Cinco-Lev.H6ber and Samaniego-V.,ernand

    f?A Sbpl&’Numerical.

    Wellbore-Storageimul

    tor,”to be published.

    23. Cinco-Ley,H6ber and Semaniego-V.,prnsnd

    tlWellTestAnalysisfor VerticallyFractur

    Wells,l’o be published.

    24. WattenbergerfR. A. and RameytH. J., Jr.:

    .

    ~ ~ Investigation of WellboreStorage and

    Skin Effectin Unste&@Liqtid Flow: 11.

    FiniteDifferenceTreatment”SOC=Pet.  

    J (Sept.1970)

    279-290.

  • 8/9/2019 #1 Effect of Wellbore Storage and Damage on the Transient Pressure Behavior of Vertically Fractured Wells.pdf

    6/8

    WELLBORE

    P

    MPERMEABLE

    BOUNDARIES

    L

    T

    II

    I

    I

    I

    .-

    —~ -

    ----

    >

    ,FRACTURE

    FIG, 1- FINITE CONDUCTIVITYERTICALFRACTUREN AN

    iNFINITE SLAS RESERVOIR,

    Q x. t)

    PLANE SOURCE [WELLI

    FIG, 3- FRACTURE FLOW MODEL,

    FI NI TECONDUCTIVI TY FRACTURE

    r—

    NW

    FIG, 2- FRACTURED WELL WITH A DAMAGED ZONE AROUND THE

    FRA CTURE ,

    af(x, f)

    Y

    PLANE SOURCE FRACTURE

    * X

    ~

    FIG, 4 - RESERVE FLOW MODEL,

    1

    cd

    I

    r’

     .-4

     0-3

     0-2 .-1

    0.000264

    kt ‘

    10

    lo~

    ‘o= Pc,xf

    ..

    FIG,

    5- DIMENSIONLESS PRESSURE DROP VERSUS DIMENSIONLESS TIME FOR A FRACTURED WELL WITH

    FRACTURE SKIN DAMAGE (WKF/~XFK =

    0.2),

  • 8/9/2019 #1 Effect of Wellbore Storage and Damage on the Transient Pressure Behavior of Vertically Fractured Wells.pdf

    7/8

    10

    1

    Id

    lo”~

    JO-4

    IO-8

    10-~

    10-[

    J

    0.000264 kt

    I

    10

    ‘o’ flxc xf

    lot

    lo~

    FIG,

    6-

    DIMENSIONLESS PRESSURE DROP VERSUS DIMENSIONLESS TIME FOR A FRACTURED WELL WITH

    FRACTURE SKIN DAmAGE (WKF/17XFK =

    2 ,

    10

    I

    ,0-3

    to-d

    Io-~

    10-2

    Jo-1

    0.000264 k

    I

    to=

    10

    102

    10

    4FC, x?

    FIG, 7- DIMENSIONLESS PRESSURE DROP VERSUS DIMENSIONLESS TIME FOR A FRACTURED WELL WITH

    FRACTURE SKIN DAMAGE (WKF/IIXFK E

    100),

    3

    \

      bo”e

    1

     

    sf,’**  +-1

    A

    \

    I

    r \\

    I

    -r

    *

    9

    .2 .4 ,6 .8 j

    x+

    FIG, 8- STABILIZEDLUX DI STRI BUTION” FOR DI F-

    FERENT FEA CTURE SK IN DAM Ac i E (WKF/7XFK ={0,2

    es

    o

     

    -.

    FIG,9-

    STABILIZED FLux[.isTRIBuTIgN [o;o;;F-

    FERENT FRACTURE SKIN QAMAGE (WKF/17XFI( .

  • 8/9/2019 #1 Effect of Wellbore Storage and Damage on the Transient Pressure Behavior of Vertically Fractured Wells.pdf

    8/8

    .

    lot

    8

    t

    1

    1

    1 I

    I

    I

    @ .

    to=

    0.000264 kt

    + r etXf

    Fi g. 10-

    Dimensionless

    fracture

    ski n damage).

    pressurevs.

    di mensi onl essti me for swel l w th a ful l y penetrati ngverti cal f racture

    1

    ~o-l

    10-2

    10-3

    10-4

    1

    to =

    0.000264 kt

    01 v Ct

    Xf ’

    Fi g. 11 . - Di mensi onl esswel l bore pressureversus di mensi onl esst i me fora vert i cal l yf racturedwel l w th

    f racture skin damage and wel l bore storage.