1 continuations of nls solutions beyond the singularity gadi fibich tel aviv university ff moran...

72
1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L. Gaeta - Cornell

Upload: silas-paul

Post on 18-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

1

Continuations of NLS solutionsbeyond the singularity

Gadi Fibich Tel Aviv University

ff

• Moran Klein - Tel Aviv University• B. Shim, S.E. Schrauth, A.L. Gaeta - Cornell

Page 2: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

2

NLS in nonlinear optics

Models the propagation of intense laser beams in Kerr medium (air, glass, water..)

Competition between focusing Kerr nonlinearity and diffraction

z“=”t (evolution variable)

focusing nonlinearitydiffraction

2 0, ,z xx yyi z x y

r=(x,y)

z

z=0

Kerr Medium

Input Beam

Page 3: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

3

Self Focusing

Experiments in the 1960’s showed that intense laser beams undergo catastrophic self-focusing

Page 4: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

4

Kelley (1965) : Solutions of 2D cubic NLS can become singular in finite time (distance) Tc

2 2

0 4 x ye

Finite-time singularity

2

0, , 0, 0, , ,t xx yyi t x y x y x y

Page 5: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Beyond the singularity

5

?• No singularities in nature

• Laser beam propagates past Tc

• NLS is only an approximate model

• Common approach: Retain effects that were neglected in NLS model: Plasma, nonparaxiality, dispersion, Raman, …

• Many studies

• …

Page 6: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Compare with hyperbolic conservation laws

Solutions can become singular (shock waves) Singularity arrested in the presence of viscosity

Huge literature on continuation of the singular inviscid solutions: Riemann problem Vanishing-viscosity solutions Entropy conditions Rankine-Hugoniot jump conditions Specialized numerical methods

… Goal – develop a similar theory for the NLS

Page 7: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Continuation of singular NLS solutions

7

Tc

?NLS

Page 8: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Continuation of singular NLS solutions

8

Tc

NLSNLS

no ``viscous’’ terms

Page 9: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Continuation of singular NLS solutions

9

Tc

NLSNLS

``jump’’ condition

no ``viscous’’ terms

Page 10: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Continuation of singular NLS solutions

2 key papers by Merle (1992) Less than 10 papers

10

Tc

NLSNLS

``jump’’ condition

no ``viscous’’ terms

Page 11: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Talk plan

1. Review of NLS theory

2. Merle’s continuation

3. Sub-threshold power continuation

4. Nonlinear-damping continuation

5. Continuation of linear solutions

6. Phase-loss property

11

Page 12: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

12

General NLS

d – dimension, σ – nonlinearity

2, 0ti t

x

( )

1 1

1,

...d d

d

x x x x

x xx =

=¶ + +¶D

Definition of singularity:

Tc - singularity point

1

10 , lim

cHt T

Hy y®

Î =¥

Page 13: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

13

Classification of NLS

global existence

(no blowup)

Subcritical σd<2

blowup Critical σd=2

blowup Supercritical

σd>2

( )1, dx xx =

2, 0ti t

x

Page 14: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

σd= 2 Physical case considered earlier (σ=1,d=2) Since 2σ= 4/d, critical NLS can be rewritten as

14

4/, 0

d

ti t x

Critical NLS (focus of this talk)

Page 15: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

15

Solutions of the form

The profile R is the solution of

Enumerable number of solutions Of most interest is the ground state:

Solution with minimal power (L2 norm)

4/ 110, 0, 00

ddR R R R R Rr

r

Solitary waves

,ite R r r x

d=2

Townes profile

Page 16: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

16

Critical power for collapse

Thm (Weinstein, 1983): A necessary condition for collapse in the critical NLS is

Pcr - critical power/mass/L2-norm for collapse

2 2

0 2 2,cr crP P R

Page 17: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Explicit blowup solutions

Solution width L(t)0 as tTc

ψR,αexplicit becomes singular at Tc

Blowup rate of L(t) is linear in t

17

t

2( )explicit

4R, /2

2

0

1( , ) ,

( ) ( )

( ) ), ( )(

tL ri t iL

d

t

c

rt r R

L t L t

L t t L s dsT

e

Page 18: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Minimal-power blowup solutions

ψR,αexplicit has exactly the critical power

Minimal-power blowup solution

ψR,αexplicit is unstable, since any perturbation that

reduces its power will lead to global existence

18

22explicit

R,

1

( ) ( )d

rR

L t L t

2

2crP R

Thm (Weinstein, 86; Merle, 92) The explicit blowup solutions ψR,α

explicit are the only minimal-power solutions of the critical NLS.

Page 19: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Stable blowup solutions of critical NLSFraiman (85), Papanicolaou and coworkers (87/8) Solution splits into a singular core and a regular tail Singular core collapses with a self-similar ψR profile

Blowup rate is given by

Tail contains the rest of the power ( ) Rigorous proof: Perelman (01), Merle and Raphael (03)

19

2( ) ( )

log logc

c

tTL t

tT

loglog law

R / 2

1( , ) ~ ( , )

( ) ( )d

rt r t r R

t L tL

2

0 2 crP

Page 20: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Bourgain-Wang solutions (1997)

Another type of singular solutions of the critical NLS Solution splits into a singular core and a regular tail Singular core collapses with ψR,α

explicit profile

Blowup rate is linear

ψB-W are unstable, since they are based on ψR,αexplicit

(Merle, Raphael, Szeftel; 2011) Non-generic solutions

20

Page 21: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

21

Continuation of NLS solutions beyond the

singularity

?

Page 22: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Talk plan

1. Review of NLS theory

2. Merle’s continuation

3. Sub-threshold power continuation

4. Nonlinear-damping continuation

5. Continuation of linear solutions

6. Phase-loss property

22

Page 23: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Explicit continuation of ψR,αexplicit (Merle, 92)

Let ψε be the solution of the critical NLS with the ic

Ψε exists globally Merle computed rigorously the limit

23

explicit0 R,( ) (1 ) ( 0, ), 0 1r t r

0lim ( , ), 0t r t

2 2 2

220 (1 ) crPR

Page 24: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

• Before singularity, since

• After singularity

Thm (Merle 92)

24

explicit

0lim ( , ) ( , ) , 0c ct r t r tT T

explicitR,( 0) (1 ) ( 0),t t

explicitR,0

lim ( , ) ( , ), 0 ct r t r t T

Page 25: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

• Before singularity

• After singularity

Thm (Merle 92)

25

explicitR,0

lim ( , ) ( , ) , 0c ct r t r tT T

explicitR,0

lim ( , ) ( , ), 0 ct r t r t T

Page 26: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

• Before singularity

• After singularity

Thm (Merle 92)

26

explicitR,0

lim ( , ) ( , ) , 0c ct r t r tT T

0lim ( )

0

cL t tT

t

explicitR,0

lim ( , ) ( , ), 0 ct r t r t T

Page 27: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

NLS is invariant under time reversibility

Hence, solution is symmetric w.r.t. to collapse-arrest time Tε

arrest

As ε 0, Tεarrest Tc

Therefore, continuation is

symmetric w.r.t. Tc

Jump condition

Symmetry Property - motivation

27

*andt t

Page 28: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Thm (Merle 92)

28

• Symmetry property: Continuation is symmetric w.r.t. Tc

• Phase-loss Property: Phase information is lost at/after the singularity

• After singularity

explicit *

R,0

For any , there exists a sequence 0 such that

lim ( , ) ( , ) , 0n

n

n

ic ct r t r tT Te

Page 29: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Phase-loss Property - motivation

Initial phase information is lost at/after the singularity

Why?

For t>Tc, on-axis phase is ``beyond infinity’’

29

explicit 2R,

0

arg ( ,0) ( ) ( ) , ( ) )(

lim ( )

t

c

t Tc

t t L s ds L t tT

t

Page 30: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Merle’s continuation is only valid for Critical NLS Explicit solutions ψR,α

explicit

Unstable Non-generic

Can this result be generalized?

30

Page 31: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Talk plan

1. Review of NLS theory

2. Merle’s continuation

3. Sub-threshold power continuation

4. Nonlinear-damping continuation

5. Continuation of linear solutions

6. Phase-loss property

31

Page 32: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Sub threshold-power continuation (Fibich and Klein, 2011)

Let f(x) ∊H1

Consider the NLS with the i.c. ψ0 = K f(x)

Let Kth be the minimal value of K for which the NLS solution becomes singular at some 0<Tc<∞

Let ψε be the NLS solution with the i.c. ψ0ε= (1-ε)Kth f(x)

By construction, 0<ε≪1, no collapse -1≪ε<0, collapse

Compute the limit of ψε as ε0+ Continuation of the singular solution ψ(t, x; Kth)

Asymptotic calculation (non-rigorous)

32

Page 33: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

• Before singularity

• Core collapses with ψR,αexplicit profile

• Blowup rate is linear• Solution also has a nontrivial tail

Conclusion: Bourgain-Wang solutions are ``generic’’, since they are the ``minimal-power’’ blowup solutions of ψ0 = K f(x)

Proposition (Fibich and Klein, 2011)

33

0( , ) ( , ), 0lim cB Wt r t r t T

Page 34: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

• Before singularity

• After singularity

• Symmetry w.r.t. Tc (near the singularity)

• Hence,

Proposition (Fibich and Klein, 2011)

34

0( , ) ( , ), 0lim cB Wt r t r t T

0lim ( , ) ( , ) , 0 1c cB Wt r t r tT T

0lim ( ) , 1c cL t t t TT

Page 35: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Proposition (Fibich and Klein, 2011)

35

*B-W0

For any , there exists a sequence 0 such that

lim ( , ) ( , ) , 0 1n

n

n

c ci

t r t r tT Te

• Phase information is lost at the singularity

• Why?

• After singularity

explicitR,lim arg lim argB Wt Tc t Tc

Page 36: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Simulations - convergence to ψB-W

Plot solution width L(t; ε)

36

0lim ( ) cL t tT

2

4

0, 0, (1 )

1.481395

tht xx

th

xi t x K

K

e

Page 37: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Simulations – loss of phase

How to observe numerically? If 0<ε≪1, post-collapse phase is ``almost lost’’ Small changes in ε lead to O(1) changes in the phase

which is accumulated during the collapse Initial phase information is blurred

37

Page 38: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Simulations - loss of phase

38

O(10-5) change in ic lead to O(1) post-collapse phase changes

Page 39: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Simulations - loss of phase

39

0lim arg( ( ) )ct T

O(10-5) change in ic lead to O(1) post-collapse phase changes

Page 40: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Talk plan

1. Review of NLS theory

2. Merle’s continuation

3. Sub-threshold power continuation

4. Nonlinear-damping continuation

5. Continuation of linear solutions

6. Phase-loss property

40

Page 41: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

NLS continuations

So far, only within the NLS model: Lower the power below Pth , and let PPth-

Different approach: Add an infinitesimal perturbation to the NLS Let ψε be the solution of

If ψε exists globally for any 0<ε≪1, can define the ``vanishing –viscosity continuation’’

41

2

``viscosity''

, 0[ ]ti t F x

0

, : lim , , 0continuation t t t

x x

Page 42: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

NLS continuations via vanishing -``viscosity’’ solutions

What is the `viscosity’? Should arrest collapse even when it is infinitesimally small Plenty of candidates:

Nonlinear saturation (Merle 92) Non-paraxiality Dispersion …

42

Page 43: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Nonlinear damping

``Viscosity’’ = nonlinear damping Physical – multi-photon absorption Destroys Hamiltonian structure

Good!

43

Page 44: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Critical NLS with nonlinear damping

Vanishing nl damping continuation : Take the limit δ0+

Consider ψ0 is such that ψ becomes singular when δ=0 if q≥ 4/d, collapse arrested for any δ>0 If q< 4/d, collapse arrested only for δ> δc(ψ0)>0

Can define the continuation for q≥ 4/d

44

4/

10

, 0, 0 1

0,

d q

ti t i

H

x

x x

0

, : lim , , 0continuation t t t

x x

Page 45: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Explicit continuation

Critical NLS with critical nonlinear damping (q=4/d) Compute the continuation of ψR,α

explicit as δ0+

Use modulation theory (Fibich and Papanicolaou, 99) Systematic derivation of reduced ODEs for L(t) Not rigorous

45

4/

explicit0 R,

, (1 ) 0

0,

d

ti t i

t r

x

Page 46: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Asymptotic analysis Near the singularity

Reduced equations given by

Solve explicitly in the limit as δ0+

46

~

3 2( ) , ( )tt tt tL

L L

R / 2

1( , ) ~ ( , )

( ) ( )d

rt r t r R

t L tL

Page 47: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Asymptotic analysis Near the singularity

Reduced equations given by

Solve explicitly in the limit as δ0+

Asymmetric with respect to Tc

Damping breaks reversibility in time

47

~

3 2( ) , ( )tt tt tL

L L

R / 2

1( , ) ~ ( , )

( ) ( )d

rt r t r R

t L tL

0

( ) 0lim ( ; ) 1.614

( ),

c c

c c

t tT TL t

t tT T

Page 48: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

• Before singularity

• After singularity

• Phase information is lost at the singularity• Why?

Proposition (Fibich, Klein, 2011)

48

explicitR,0

lim

* explicitR,0

For any , there exists a sequence 0 such that

lim 1.61( , ) , ), 4(n

n

ic ct r t rT Te

explicitR,lim arg

t Tc

Page 49: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Simulations – asymmetric continuation

L=α)Tc-t( L=κα(t-Tc)

Page 50: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Simulations – loss of phase

Page 51: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Nonlinear-damping continuation of loglog solutions

51

24

0

6

Example:

, 0, 1.6 xt xxi t x i e

5 4

......... 2.5 4

____ 1 5

e

e

e

• Highly asymmetric• Slope ±∞

0lim ( ; ) c

t

c

t TtL

t T

Page 52: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Talk plan

1. Review of NLS theory

2. Merle’s continuation

3. Sub-threshold power continuation

4. Nonlinear-damping continuation

5. Continuation of linear solutions

6. Phase-loss property

52

Page 53: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Collapse in linear optics

Can solve explicitly in the geometricaloptics limit (k0∞)

Linear collapse at z=F

53

2

0

0

2

2

2 , 0,

( 0, )

z

ikF

i zk

z e e

x

x

xx

2

2( )/ 2

1, ( ) 1

( )zL

d

zL z

z FLe

x

GO

• z=t• k0 is wave #

Page 54: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Continuation of singular GO solution consider the linear Schrödinger with k0<∞

Global existence Can solve explicitly (without GO approx) Compute the limit as k0∞

54

lim ( ) 1 , 0k

zL z z

F

GO

*/2

GO

( , ),lim ( , )

(2 , ),idk

z z Fz

F z F ze

xx

x

Page 55: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

No phase loss after singularity Why?

Post-collapse phase loss is a nonlinear phenomena

Continuation of singular GO solution

55

GOlim arg 0 ( )z F

GO

*/2

GO

( , ),lim ( , )

(2 , ),idk

z z Fz

F z F ze

xx

x

Page 56: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Talk plan

1. Review of NLS theory

2. Merle’s continuation

3. Sub-threshold power continuation

4. Nonlinear-damping continuation

5. Continuation of linear solutions

6. Phase-loss property

56

Page 57: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Universality of loss of phase

All NLS continuations have the Phase-loss Property Phase of all known singular NLS solutions becomes

infinite at the singularity Hence, any continuation of singular NLS solutions will

have the Phase-loss Property When collapse-arresting mechanism is small but not

zero, post-collapse phase is unique. But, the initial phase information is blurred by the large sensitivity to small perturbations of the phase accumulated during the collapse. Initial phase is ``almost lost’’

57

Page 58: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Simulations – NLS with nonlinear saturation

58

42, , 0, 5 4ti t x y e

Page 59: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Simulations – NLS with nonlinear saturation

59

2 10, , 0, 0.3 8ti t x y e

Page 60: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Experiments (Shim et al., 2012)

Laser beam after propagation of 24cm in water ``Correct’’ physical continuation is not known

Post-collapse loss-of-phase is observed

60

Page 61: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Simulations of propagation in water

NLS with dispersion, space-time focusing, multiphoton absorption, plasma …

Input-power randomly chosen between 240 -260 MW On-axis phase after propagation of 24cm

61

Page 62: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Importance of loss of phase NLS solution is invariant under multiplication by eiθ

Multiplication by eiθ does not affect the dynamics But, relative phase of two beams does affect the dynamics

62collapse no

collapse

Page 63: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Importance of loss of phase NLS solution is invariant under multiplication by eiθ

Multiplication by eiθ does not affect the dynamics But, relative phase of two beams does affect the dynamics

63collapse no

collapse

Page 64: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Importance of loss of phase NLS solution is invariant under multiplication by eiθ

Multiplication by eiθ does not affect the dynamics But, relative phase of two beams does affect the dynamics

64collapse no

collapse

Page 65: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Importance of loss of phase NLS solution is invariant under multiplication by eiθ

Multiplication by eiθ does not affect the dynamics But, relative phase of two beams does affect the dynamics

65collapse no

collapse

Post-collapse chaotic

interactions

Page 66: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Experiments (Shim et al., 2012)

Interaction between two ``identical’’ crossing beams after propagation of 24cm in water - seven consecutive shots

66

Page 67: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Experiments (Shim et al., 2012)

Interaction between two ``identical’’ crossing beams after propagation of 24cm in water - seven consecutive shots

67

Page 68: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Experiments (Shim et al., 2012)

Interaction between two parallel beams with initial π phase difference, after propagation of 24cm in water - five consecutive shots

68

Page 69: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Summary

1. Sub-threshold power continuation ψ0

ε= (1-ε)Kthf(x)

Generalization of Merle (92) Limiting solution is a Bourgain-Wang sol., before and after

the singularity

2. Vanishing nonlinear-damping continuation Vanishing-viscosity approach Viscosity = nonlinear damping Explicit continuation of ψR,α

explicit

Asymmetric w.r.t. Tc

69

Page 70: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Summary: Properties of continuations

Loss of phase at/after singularity Universal feature Leads to post-collapse chaotic interactions Observed numerically and experimentally

Symmetry with respect to Tc

Jump condition Only holds for time-reversible continuations Not a universal feature

70

Page 71: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

Open problems

What is the `correct’’ continuation? Additional properties of continuations?

``Entropy’’ conditions? ``Riemann Problems’’? …

71

Page 72: 1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L

References

G. Fibich and M. Klein

Continuations of the nonlinear Schrödinger equation beyond the singularity Nonlinearity 24: 2003-2045, 2011

G. Fibich and M. Klein

Nonlinear-damping continuation of the nonlinear Schrödinger equation- a numerical study Physica D 241: 519-527, 2012

B. Shim, S.E. Schrauth, , A.L. Gaeta, M. Klein, and G. Fibich

Loss of phase of collapsing beams Physical Review Letters 108: 043902, 2012

72