1 challenge the future the lateral motion of wafer under the influence of thin-film flow leilei hu...

38
1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

Upload: janice-powers

Post on 20-Jan-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

1Challenge the future

The Lateral Motion of Wafer under the Influence of

Thin-film Flow

Leilei Hu Solid and Fluid Mechanics

30-09-2013

Page 2: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

2Challenge the future

content of the presentation

Introduction to the problem

1. mathematical model (dynamic equation)

2. numertical computation (close the equation)

3. parameter study

4. experimental verification

Page 3: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

3Challenge the future

Introduction to the problem

• "Levitrack" is a solar-cell wafer processing device.

• The wafers are flying in the chamer in Levitrack where presursor gases are deposited onto the substrate of the wafers.

Wafer transporting in process chamber

Page 4: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

4Challenge the future

Wafer in the chamber & problem definition

Wafer transporting in process chamber top view

side view

injecting direction

Page 5: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

5Challenge the future

Targets

•Study and improve the dynamic behavior of the wafer in lateral directions.

•Modify the dimension of the chamber to reduce the possibility of the collision.

Page 6: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

6Challenge the future

Part I

Mathematical model

(Dynamic equation)

Page 7: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

7Challenge the future

Mathematical model(1)

• Only lateral motion is considered• Length of wafer in y direction infinitely long

problem simplification

y

x

y-velocity

Page 8: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

8Challenge the future

Mathematical background of the model(2)

dynamic equation----a result of force equilibrium

with

0...

kxxcxm

2

)(,

)( 21

21

21 yyw

yw LggbLbDk

gg

LLggc

Page 9: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

9Challenge the future

Mathematical background of the model(2)

• g1 ---- gap above the wafer

• g2 ---- gap below the wafer

• Lw ---- length of the wafer in lateral direction

• Ly ---- length of the wafer in transporting direction

• μ ---- viscosity coefficient

• m ---- mass of wafer

• Dw ---- thickness of wafer

• b ---- slope of the curve"average pressure difference----

lateral displacement" (to be determined)

dynamic equation

bxPP 21

x

ΔP

bo

Page 10: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

10Challenge the future

Part II

Numerical computation

(determination of "b")

Page 11: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

11Challenge the future

Determination of b

• compute pressure value for x=0, 0.1mm, 0.2mm, 0.3mm, 0.4mm, 0.48mm• stationary model

basic idea

x(lateral direction)

y

P1 P2

bxPP 21

x

ΔP

bo

Page 12: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

12Challenge the future

Computation results

lateral forces----lateral displacements

Page 13: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

13Challenge the future

physics coupling

• Avoid computation of full NS equations by dividing the flow into

laminar flow and thin-film flow.

numerical implementation

118.3157

5.0 3 eL

H less grids and less DoFs

Page 14: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

14Challenge the future

Inlet boundary conditionnumerical implementation

Page 15: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

15Challenge the future

Inlet boundary conditionnumerical implementation

2

4

..128

gdvL

pfPdQ ave

S

2

3

...128

)(

gL

pfPdv S

ave

Q ---- volume flowd ---- diameter of inlet holesη ---- dynamic viscosity of nitrogenPs ---- supplying pressurepf ---- pressure in the inter side of the inlet holesL ---- length of the inlet holesvave---- average velocity of flow

Page 16: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

16Challenge the future

Other numerical issues and solutions

• Mesh configuration generated according to the physics of the flow

• Mesh study performed to determine the size of the mesh

• Getting it converged step by step starting from lower Renolds number material

Page 17: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

17Challenge the future

Part III

Parameter study

(Modify the chamber based on the dynamic equation)

Page 18: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

18Challenge the future

Parameter study (1)

• supply pressure

• Height of chamber

• Diameter of exhausted holes

• Width of chamber

increase the potential energy of the system

2

)( 21 yyw

LggbLbDk

21

21 )(

gg

LLggc yw

initial velocity constant

Page 19: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

19Challenge the future

Parameter study -- supply pressureincrease the potential energy of the system

Page 20: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

20Challenge the future

supply pressure

supplying pressure (pa) stiffness coefficient (N/m)

Ratio of stiffness coefficients

500 -0.1437 1

1000 -0.2967 2.06

2000 -0.5987 4.16

3000 -0.8667 6.03

Page 21: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

21Challenge the future

Parameter study -- height of chamber

increase the potential energy of the system

Page 22: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

22Challenge the future

Parameter study -- diameter of exhaust holes

increase the potential energy of the system

Page 23: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

23Challenge the future

Parameter study -- width of chamber

increase the potential energy of the system

Page 24: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

24Challenge the future

Analytical explanation of the resultsqualitative explanation of the flow model

Page 25: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

25Challenge the future

Analytical explanation of the resultsqualitative explanation of the flow model

222

111

rR

PQ

rR

PQ

high

high

222

111

.

.

RQP

RQP

highPrR

R

rR

RPP )(

22

2

11

121

stiffness is proportional to supply pressure

Page 26: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

26Challenge the future

supply pressure

supplying pressure (pa) stiffness coefficient (N/m)

Ratio of stiffness coefficients

500 -0.1437 1

1000 -0.2967 2.06

2000 -0.5987 4.16

3000 -0.8667 6.03

Page 27: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

27Challenge the future

Parameter study (2)configuration updated

initial configurations updated configurations

width of chamber (mm)

157 158

diameter of exhaust holes (mm)

0.9 1.5

Page 28: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

28Challenge the future

Parameter study (2)configuration updated

Page 29: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

29Challenge the future

Part IV

Experimental verification

Page 30: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

30Challenge the future

Experimental verification (1)experimental frequency ≈ analytical frequency

Page 31: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

31Challenge the future

Experimental verification (2)translational oscillation

Page 32: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

32Challenge the future

Experimental verification (2)translational frequency

supplying pressure (pa)

analytical frequency (Hz)

experimental frequency (Hz)

ratio

500 3.00 2.17-2.46 1.22

1000 4.31 2.53-3.14 1.37

2000 6.12 1.94-4.14 1.48

Page 33: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

33Challenge the future

Experimental verification (3)rotational oscillation

Page 34: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

34Challenge the future

Experimental verification (3)rotational frequency

supplying pressure (pa)

analytical frequency (Hz)

experimental frequency (Hz)

ratio

500 1.69 0.75-1.48 1.14

1000 2.44 1.20-2.11 1.16

2000 3.46 1.49-2.68 1.29

Page 35: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

35Challenge the future

Experimental verification (4)

• In real system not all the flow contributes to the lateral stiffness of the wafer.

explanation of the difference

Page 36: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

36Challenge the future

Conclusions

• The dynamic equation and numerical computation are sufficient to show the oscillation behavior of the wafer.

• In reality,the leaking of the chamber is the dominant factor for the collision between the wafers and the walls, which causes much larger oscillation amplitude.

Page 37: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

37Challenge the future

Experimental verification (2)translational oscillation

Page 38: 1 Challenge the future The Lateral Motion of Wafer under the Influence of Thin-film Flow Leilei Hu Solid and Fluid Mechanics 30-09-2013

38Challenge the future