1. bridge engineering khmer

Upload: cheng-por-eng

Post on 01-Jun-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 1. Bridge Engineering Khmer

    1/63

  • 8/9/2019 1. Bridge Engineering Khmer

    2/63

      National Polytechnic Institute of Cambodia (NPIC)

          

    v ng neer ng acu y

       Design of Highway Bridges:

    based on -

        ,   

    1

                 

    .           ž    

      

             Š        Šž

    2

      Ð ý Š       

    ¤    Ð              ¤.    

                         (Jn, 88)¤

     J J H ()  63

           3¤

    ..   Wooden Bridges)

    P     Wnwg    Š   

           u   g    Š       ¤ P    Š

             Pqu    Nw Hp  ¤ Wnwg   ý   ãCuå    

            u     un,   nn vn  ,6 ¤

    4

    Lecturer: SOK RASMEY, M. Eng,

  • 8/9/2019 1. Bridge Engineering Khmer

    3/63

    Fig. 1.1 James J. Hill Stone Arch Bridge, Minneapolis, Minnesota.

    (Hibbard Photo, Minnesota Historical Society, July 1905.)5

    Fig. 1.2 Trussed arch—designed by Lewis Wernwag, patented 1812.

    Fig. 1.3 Arched truss—designed by Theodore Burr, patented 1817. (From

     Bridges and Men by Joseph Gies. Copyright © 1963 by Joseph Gies.6

    Fig. 1.4 Philippi covered bridge. (Photo by Larry Belcher, courtesy of

    West Virginia Department of Transportation.)7

    Bu    Š            (3)   Р

            Р  Р    P    

          gn  ž Vgn¤ Lu Cnw  Š    

               

    Р   Š       ( u)    

    I wn ¤  8

    Lecturer: SOK RASMEY, M. Eng,

  • 8/9/2019 1. Bridge Engineering Khmer

    4/63

      ž ž         ()¤   Š   

           

    ý  ¤ Ð        Р   Ð ýŠ      ¤

               ý       Cn   S n H   Lng      O (dwd, )¤   Cn Lng 

    9

      Ð¤    Š      Ð    ð   ž  ý    

          

       

    .

    .

     Metal Truss Bridges).

    .

     Metal Truss Bridges)

      ( d)         Š   

                  n   ng   ¤  

     Š    P        Ð

    10

    Fig. 1.5 Lattice truss—designed by Ithiel Town, patented 1820.

    Fig. 1.6 Multiple king-post truss—designed by

    Colonel Stephen H. Long in 1829.11

    Fig. 1.7 Howe truss, designed by William Howe, patented in 1841.

    Fig. 1.8 Pratt truss, designed by Thomas and Caleb Pratt,

     patented in 1844.12

    Lecturer: SOK RASMEY, M. Eng,

  • 8/9/2019 1. Bridge Engineering Khmer

    5/63

    Fig. 1.9 Bowstring arch—designed by Squire Whipple,

     patented in 1841.

    Fig. 1.10 Double-intersection Pratt—credited to Squire Whipple.13

    ¤   šŠ ý    Š     P   (8)   

         

        S u   W         Š     ( u bdg) ()¤

     Š   P     Š        

    .

    .

     Suspension Bridges).

    .

     

     Suspension Bridges)

      J   Fn    (wugn n)  

    14

     Jb’    C     Unnwn, Pnnvn¤   Ð    ð   

         n     ng     g           Cnn     3    B   86¤   

        ng         ¤             š     ¤

    15

    Fig. 1.11 Wheeling Suspension Bridge. (Photo by John Brunell,

    courtesy of West Virginia Department of Transportation.)16

    Lecturer: SOK RASMEY, M. Eng,

  • 8/9/2019 1. Bridge Engineering Khmer

    6/63

    Table 1.1 Long-span suspension bridges in the United States

    17

    ..   Metal Arch Bridge)

      Ð              un p wnv      

     Ð  Pnn vn ¤                         (f xd upp)¤

             6    6      38¤

            Wngn  18

         ¤      Ð            p    g      n   Hw    ¤  

     Ð    ð    3ž       ž 3        

                   d         

     Ð   ¤   H G   8 ž    Nw Y     

    19

    Fig. 1.12 Eads Bridge, St. Louis, Missouri. (Photo courtesy of Kathryn

    Kontrim, 1996.)20

    Lecturer: SOK RASMEY, M. Eng,

  • 8/9/2019 1. Bridge Engineering Khmer

    7/63

    Fig. 1.13 New River Gorge Bridge.21

           Bnn    K    vn Ku   Sn Ind    Nw J  8

                 w v g   8   Ð         Fv, ž  Vgn  8 Ð  M B, j, In (3)¤  R i f d C t B id )..  Reinforced Concrete Bridges)

      Ð       R n    Р    AvdL  Gdn G, Sn Fn¤ 

    22

               ¤

         (pnpnd) Gg   Wngu

           u   О    

       Bxb  C         О  C, Cf n

        

      Ð

      n  

         u

              

    23

    Fig. 1.14 Bixby Creek Bridge, south of Carmel, California. [From Roberts

    (1990). Used with permission of American Concrete Institute.]24

    Lecturer: SOK RASMEY, M. Eng,

  • 8/9/2019 1. Bridge Engineering Khmer

    8/63

    .. 

     Girder Bridge)

       Ð                ¤  

       Š     ¤  Š     

               Š¤       š   ¤      š ž     ¤

    25

    Fig. 1.15 Napa River Bridge. (Photo courtesy of California Department

    of Transportation.)26

       Š       Р   ¤  

           n  bd       

        ¤     Р    Š    

            .  Brid e S ecification   

             

    27

        C   Hn         Nw Y   (dwd, )¤    d Cp

                                 ¤  Cp    Р           n     ng n ng   n,

     AR  A  ¤      Š       Р  

     (AASHO)  28

    Lecturer: SOK RASMEY, M. Eng,

  • 8/9/2019 1. Bridge Engineering Khmer

    9/63

    Ð  Ð    ð           ¤    Ð   Р     

                          Ð           ð     AASHO¤

       ãHå     AASHO               u    

    Р ¤                     Ð    ð     ¤   AASHO

    29

    Р       (An An   f S   Hgw ndnp n   ,

    Ð  Ð       ð              ÐР  (Ld   nd R n   F

       ,                 LRFD   Ф          Ð      LRFD¤ 

    30

    Ð  AASHO LRFD  ¤     (AASHO, 8)   

           , , ¤

    Ð  Ð    ð     AASHO     

                   

      3, , , , 3, , 6,6, 6, 3, , 83, 8, , 6 ¤

    31

     (Problem)   ž    

              Р      

      ?  Ð? 

                   d bd      

     Š   (u)   ¤

    32

    Lecturer: SOK RASMEY, M. Eng,

  • 8/9/2019 1. Bridge Engineering Khmer

    10/63

     

    33

    Lecturer: SOK RASMEY, M. Eng,

  • 8/9/2019 1. Bridge Engineering Khmer

    11/63

       Aesthetics and Bridge Types

    .    (Introduction)     Š       Ð

     Ð ý    

         ¤     Š Ð   ð   Ð    

    1

    ¤    ¤

    ý

        

    Ð

       

    Р (how is a conceptual designformulated)? (        design Р   , Р    )¤ ý    ý   Р 

    Ð ?         РР  ð           Ð  

    2

         š  ¤.     

    (Nature of the Structural Design Process)

    РР  ð     Р Š ý    Ð     Š    ¤    š Ð       ¤

    Р  Ð    š 

      Addis (1990)      Output, Input, Regulation  Design Procedure¤3

    2.1 Р  Ð Ð   ð    (Addis, 1990)

    4Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    12/63

    Р Ð      2.1¤

    Description and Justification

    Drawings

    andSpecification

    Structural Integrity

    andStability

    5

     (Design Process)-       (Topography), Š

      (Functional),

       (Requirement),

       šŠ

        (Soil

    Condition),     (Availability of  Materials),       (Hydrology)       (Temperature range)¤

    -         , Р  

    , Š ý   ,   , ,   Š ý   ¤

    6

    .      (Aesthetics in Bridge Design)

    .. 

     Definition of Aesthetics)

          ¤         (beauty)    (philosophy)        (effect)         ¤ Р    

         Ð              Ð        ¤ 7

    .

    .

     

     Qualities of Aesthetic Design)

           Watson    Hurd(1990)

       Burke (1991)

       Gottemoeller (2004)

      

        Р      Ð   ¤ Р Š (function),     (proportion),     ý     (harmony), (order),      (rhythm),  ý    (contrast)

     (texture)  ¤

    8Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    13/63

      Function)

    Š   

      Straits   Bosporus   Istanbul (2.2)¤       Š   (Brown et al., 1976)¤

    Š       ð Ð     ¤

      Proportion)

    Р         2.3¤

    9

       2.4   ý  Ð    Ð  

    ¤

       2.5 (Leonhardt,1991)      ý   ¤   Р    Magnan Viaduct      Nizza  French Riviera     2.6 (Muller, 1991)¤

         ¤    (low profile) 

    10

    2.2  Bosporus Straits  Istanbul (Brown et al., 1976)11

    2.3 Š Mancunian Way (Lee, 1990)12Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    14/63

    2.4  ,   ý    (Leondardt, 1991)

    2.5  V:      (Leondardt, 1991)

    13

      ¤      2.7¤  Wasserman (1991)   Ð 

      ð

       ž

    Ð

      ž

       

       2.8  2.9  ý   ¤Ð    ÐР 

         ¯    þ     2.10(Menn, 1991)¤ Leonhardt (1991)  

    1/8   (2.11)¤ ý      Ð     

    14

    2.6  Magnan Viaduct    Nizza, France (Muller, 1991)15

    2.7    (ž)     , (ž)     

       (Leonhardt, 1991)

    16Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    15/63

    2.8   Ð   ð   ž 17

    2.9         Š  ý     Ð   ð   ž

    18

    2.10      þ    Š  (Menn, 1991)

    19

    2.11  1/8 

      (Leonhardt, 1991)

    20Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    16/63

    2.12       1/3  (Leonhardt, 1991)

    21

    1/3  (2.12)¤ 

      Harmony)

        

       ý

        

    ý    ¤   Ð   ð     ý        Ð   ð           ¤

       ý      

               Ð     ¤

     Ð      2.13¤22

     Š    ý        Ð     2.14¤

      ý   Р    (overpass)      2.15     Linn Cove Viaduct 2.16¤

     

      Order and Rhythm)

       2.17          ¤

     

     

      Contrast and Texture)

      ý        ý    ž   23

    2.13 ,  Napa, California

    24Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    17/63

    2.14 ý     ý    (Murray, 1991)

    25

    2.15        West Lilac, I-15

    26

    2.16    Linn Cove ž Carolina27

    2.17    Tunkhannock  Nicholson,Pennsylvania РA. Burton Cohen

    28Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    18/63

    ¤  (cable-stay)  (suspension)

    þ

      

       2.18

      2.19¤

       ý                ¤

      

      Light and Shadow)

           ž 

                        (2.21)¤         2.22¤

    29

    2.18  East Huntingtion  Huntington, West Virginia30

    2.19  Brooklyn,    New York 

    31

    2.20 þ  ,    I-82 Hinzerling  , Prosser, Washington

    32Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    19/63

    2.21          Š    ý  

    33

    2.22  Ð  ý    (a)  Ð   ð   Š   

    (b)

       

       Ð   (c)   

    34

     Resolution

      I-90     Olympia, Washington      2.23¤    2.24     Š     Š    ž ¤            2.25¤   Š  (haunch)  Ð        2.26  

      ¤ Leonhardt (1991)    ŠÐ        ý   35

    2.23    Cedar Falls, I-90, King County, Washington36Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    20/63

    2.24         Š  ý        

    37

    2.25 (a)  Ð   ð   ž  (b)  Ð   ð   ž  (c)  Ð   ð   ž ž

    38

    ¤2.27    ¤

    /

      Girder Span/Depth Ratio)

      Leonhardt (1990)   šŠ ž          /    (L/d)¤   šŠ     Ð   ð       L/d   Š ý   ¤ 2.1       

        Ð   ACI-ASCE 343 (1988) 2.5.2.6.3-1  AASHTO (2004)¤39

    2.26 (a) Š Ð   ð     (b) ŠŠ     ð 

    40Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    21/63

    2.27     I-39  north-central Illinois

    41

    2.1  /

    42

      Deck Overhangs)

       L/d   30    2.1¤        2.22  2.28      ¤

      Ð   S Р           W   0.4S         ý      ¤           W Р    

       h¤ Leonhardt (1991)  W/h   2:1   43

    2.28   ž (Leonhardt, 1991)44Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    22/63

    Also shown in Figure 2.29 is an important and practical detail-the

    drip groove.

    2.29      (Mays, 1990)45

     4:1   ¤

      Piers)

    2.30    ¤  Š  Ð      (2.4, 2.5  2.31)      ž¤   Š        (2.32)¤ 2.33    ¤

    2.31   2.34   ¤ РWasserman (1991)     T

    46

    2.30    (a-e, g, h)  

    T (f)  (i)(Glomb, 1991)

    47

    2.31 Š        Ð48Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    23/63

    2.32  ý   ž   þ   cab beam

    49

    2.33     (Seim and Lin, 1990)50

    2.34    San Diego, California51

    2.35 52Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    24/63

    2.36  (Multiple-column bent)53

    2.37  

    54

     (2.8) (2.35)  (multiple-column bent) 2.36¤  ý      ý    2.37¤

      Abutments)

       2.38 þ         (þ ) ¤  

    Р  1:2 ¤

    55

     

     

    Integral Abutment and Jointless Bridges)

         2.39¤

                  ¤    Ð   ð   ž     Ð  ¤  Ð   ð   ž ¤   ý   ý    Ð   ð   ¤

    56Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    25/63

    2.38    (Mays, 1990)57

    2.39  

    58

    .

    .

     

      Computer Modeling)

    (a)

    (b)

    2.40  Broadway, Daytona,Florida. (a)

      

        

     

    (b)    ¤

    59

    (a)

    (b)

    2.41    Lee RoySelmon   , Tanipa, Florida(a)      (b)   

    60Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    26/63

    (a)

    (b)

    2.42  Smart Road,Blacksburg, Virginia.

    (a)        (b)   

    ¤

    61

    .   (Types of Bridges)      -

       :

      

     

     

    -  :            -  : Š     .. 

          Š    (Arched and Truss-arched bridge)         ¤

    -        ( )     Ð   ð   ž 

    62

      š          Š  ¤

    -     (arch rib)¤

    -    Ð   ð       ¤-       

    ý           Š      

       ¤  (2.45) 63

    2.43  New River Gorge64Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    27/63

  • 8/9/2019 1. Bridge Engineering Khmer

    28/63

    ¤•    

       

       Š

     Š

      

    ¤

    •    Š  Ð         ¤

    •     (a)      (b)            local     ¤  ý   ž    ¤

    •  Ð   ð         Š¤

    69

    • ý    600m          300m¤

        РŠ          ž   ¤

     Š  (truss bridge) 2.47    

     Š        ý         ž   Š    (three-dimensional truss)   ¤

    70

      ž      Š       2.48¤

      .. 

           T              2.49¤        2.50¤

                ý    

     

     

    (applied load)¤

     Š

     

      ý      2.2¤71

    2.47  Š   

    72Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    29/63

    2.48  Š   Greater new Orleans

    73

    2.49  

    74

    2.50      

    75

    2.2 Š   

    76Lecturer: SOK RASMEY, MEng.

    2.2 Š ()

  • 8/9/2019 1. Bridge Engineering Khmer

    30/63

    2.2 Š    ()

    77

      ž      Š       2.48¤

     

    .

    .

     

           T              2.49¤        2.50¤

                ý      (applied load)¤ Š    ý      2.2¤

    78

    .   (Selection of Bridge Type)

      ..   Factors to be Considered)

        ¤   Р   Š               šŠ            ¤

    79

    2.3  Ð   ð   žŠ ý  

    80Lecturer: SOK RASMEY, MEng.

    10 20 ¤

  • 8/9/2019 1. Bridge Engineering Khmer

    31/63

     .. 

      Bridge Types Used for Different Span Length)

       (Small-Span Bridge) [ 15m]-  (Culvert)-  (Slab)   š   Ð   ð    

      Š    12m¤-     T (T-beam)     T 2.2(e)   š

    81

     10m - 20m¤-    (Wood Beam)-      (Precast Concrete Box

    Beam)

           2.2(b)  2.2(f)  (g)Р10m - 50m¤

    -     I    (Precast Concrete IBeam)

        I     82

     10m - 50m   š     ¤

    -    (Rolled Steel Beam)     Ð  

     Ð   š ¤    š    30m Р Ð   (cover plate)   ¤

     (Medium-Span Bridge) [ 75m]-          I   83

     (Precast Concrete Box Beam and Precast ConcreteI-Beam)

    -    (Composite Rolled SteelBeam)

        20% - 30%    15m¤ Р           š    100m¤

    -    (Composite Steel Plate Girder) 25m - 50m 84Lecturer: SOK RASMEY, MEng.

    Ð 100 ¤ 20 150 ¤

  • 8/9/2019 1. Bridge Engineering Khmer

    32/63

    Р100m¤-      (Cast-in-Place

    Reinforced Concrete Box Girder)

      15m - 35m   š          ¤

    -        (Cast-in-Place Post-tensioned Concrete Box Girder)

      180m¤-    (Composite Steel Box Girder)    2.2(b)  (c)

    85

     20m - 150m¤  (Large-Span Bridges) [   50m - 150m]-    (Composite Steel Plate Girder)-         

     (Cast-in-Place Post-tensioned Concrete Box Girder)-     

    (Post-tensioned Concrete Segmental Construction, ACI -

     ASCE Committee 343, 1988)-       (Concrete Arch and

    Steel Arch)

    86

    -  Š   (Steel Truss)  (Extra Large (Long) Span Bridge)[     150m]

    2.3

     Ð

     

     

      150m¤   Р       

      ¤

    87

    2.4        

    88Lecturer: SOK RASMEY, MEng.

    (Problem)

  • 8/9/2019 1. Bridge Engineering Khmer

    33/63

    2.51    Sydney89

     (Problem) .    description  

     justification Ð ¤ .   ÐР  

      ý    ? . Š ý   Š       

          (Arch)  (Suspension)?

     .      Ð   ð              ?

    90

     .  Š   Ð  Ð      ?

     .  Š  ? .   š   ?

    91

    The End

    92Lecturer: SOK RASMEY, MEng.

    Ð

  • 8/9/2019 1. Bridge Engineering Khmer

    34/63

    .     (Introduction)  Ð   

        Š   

    ¤         

       Ð   Ð     ð  ð

    1

      Ð   (Resistance)   (effect of load) (3.1)

    .   (Development of Design Procedure)

        Ð         Ð  ¤

           

       Р   Ð   AASHTO            ¤

    2

    . .     (Allowable Stress Design, ASD)

      ÐР         š Ð   ð   ¤

     ()    

      

     T

     

      

     f t :3

                   

         Р 1860 Ð  

     Š   (truss)    ¤    ASD Ð  ¤

    4Lecturer: SOK RASMEY, MEng.

      Š  S Ð    M    žÐФ    ASD

  • 8/9/2019 1. Bridge Engineering Khmer

    35/63

     f b :

    . .     (Variability of Load)

    Р   (ADS)    ð  

      ý   ¤      Š Ð  ý          ASD¤ Р   

       ðž   Ð 3.15

    (3.2)

      ðž Ð  Ð ¤      ASD         

          ASD   Ð    Ð (design code)¤

    . .       (Shortcomings of Allowable Stress Design)

    ž      ASDРР  ð   ¤ Р  

    6

    Р    šž. ýР   š

    ¤ .    

       ž   ¤

    . Р   ¤  Ð Ð()¤

    . Р            7

    (3.3)

      ¤. .          (Load and Resistance Factor Design, LRFD)

      R n   šŠ    Ð  

      3.3    Ð    Р    Ð Ð ÐР Ð  

         (LRFD)¤ Р  φ      Ð  Ð        8Lecturer: SOK RASMEY, MEng.

    »   š (Material properties)

  • 8/9/2019 1. Bridge Engineering Khmer

    36/63

    š »   (Equation that predict strength)»  /   (Workmanship)» Р (Quality control)»     (Consequence of a failure)Р  

    i

       

    »

        (Magnitudes of loads)

    » ()  (Arrangement(position) of load)»     (Possible combination of loads)

    9

     LRFD Advantage of LRFD Method)

    . Р Ð     ¤ .   ý         

     ý              Ð     Ð ¤

    .   Ð ¤.       Р( 

     ACI  AISC)¤ 

     LRFD Disadvantage of LRFD Method)

    .   Ð(   AASHTO )¤10

     .   Ð    Ð      ¤

    .  Ð ý Ð     Ð 

    ¤.      

    (Design Limit State)

    ..  (General)

    Ð

     Ð

       

        Ð

     ASSHTO (2007) LRFD    Ð 11

      

    (3.4)

     Qi  , R n , i Р  ý , φ Ð  ý   

    i

    Р   ¤   Ð    (nonstrength limit state) φ = 1¤

     3.4  3.3 РР     

    i

    ¤    i

     12Lecturer: SOK RASMEY, MEng.

    (3 5a) D [A1.3.3]

  • 8/9/2019 1. Bridge Engineering Khmer

    37/63

    (3.5a)

    (3.5b)

      

      

    Р, R

    Р   

    Р  ž¤ Ð                 

    ¤  Ð      = R

    =1.0 ¤

    13

         D [A1.3.3]Р 

       Ð  D 1.05  D 1.00 Ð ý D 0.95    Ð   

    D= 1.00   R [A1.3.4]                

    14

               Ð  

    R 1.05    R 1.00   R 0.95    Ð   R = 1.00

         I [A1.3.5]

      ž

     

       

         15

        Ðð       ð ¤ ž             ¤        ž 

       ð   Š¤ ž            

    I 1.05    žI 1.00  I 0.95  ž

    16Lecturer: SOK RASMEY, MEng.

     Ð    and nonstructural attachment)

  • 8/9/2019 1. Bridge Engineering Khmer

    38/63

    I = 1.00

      (Load Designation) [A3.3.2]

     (permanent) (transient)       Ð      ž

    Y  (Permanent Loads)

    DD     Ð   (Downdrag)DC     Ð   ð     Ð    ð      (Dead load of structural components

    17

    )

    DW       ž  (Dead load of wearing surface and utilities)

    EH          (Horizontal earthpressure load)

    EL     š  ž               

      (Accumulated lock-in forceeffects resulting from the construction process,including the secondary forces from posttension)

    18

    ES       (Earth surcharge load)EV        

    (Vertical pressure from dead load of earth fill)

    Y    (Transient Loads)

    BR    (Vehicular braking force)CE     (Vehicular centrifugal force)CR     (Creep)CT     ð  (Vehicular collision force)CV  

      ð

       (Vessel collision force)

    EQ        (Earthquake force)19

    FR       (Friction)IC     (Ice load)IM     (Vehicular dynamic load

    allowance)

    LL     (Vehicular live load)LS     (Live load surcharge)PL       (Pedestrian live load)SE       (Settlement)SH

       

     (Shrinkage)

    TG      (Temperature gradient)20Lecturer: SOK RASMEY, MEng.

    TU      (Shrinkage) 3 1 3 2¤ Š

  • 8/9/2019 1. Bridge Engineering Khmer

    39/63

    WA         (Water load

    and stream pressure)

    WL    Š  (Wind load on liveload)

    WS    Š  Ð   ð    (Wind load onstructure)

          (Load Combinations and Load Factors)

    Р  ý     21

       3.1  3.2¤         Š   ý      Š ž¤

    .

    .

      

      

    (Service Limit State)

                       šŠ [A1.3.2.2]¤

       Ð  φ=1.0 ÐР  

    i

     1.0¤

    22

    3.1    Ð   

    23

    3.2 Р   p

    24Lecturer: SOK RASMEY, MEng.

    I (Service I).    II (Service II)

  • 8/9/2019 1. Bridge Engineering Khmer

    40/63

    .    I (Service I)      

        

    Š

       90km/h

        ¤       Ð   ð           Ð   ð                       Ð     

      ¤     Р     ¤

    25

            Ð   ð         š Š   (slip of slip-critical connection)    ¤   šŠ     Ð    ð        AASHTO ¤

    .    III (Service III)

            Ð       Ð   ð   ž  ý   

    26

             ¤   Ð  0.80   Ð   Š           Š  

       Š ¤     I             ¤

    .    IV (Service IV)    

     

           Ð   ð   ž 27

       ¤ Р  0.70 Š  135km/h¤

    ..      (Fatigue and Fracture Limit State)

                  šŠ          Ф   šŠ            (stress-range)          

      [A1.3.2.2]¤

          28Lecturer: SOK RASMEY, MEng.

                ð       1.0 Š ý      

  • 8/9/2019 1. Bridge Engineering Khmer

    41/63

     ¤         φ = 1.0¤

    ..  (Strength Limit State) [A1.3.2.4]

         Ð ý       (3.4)      

           ¤               (Flexure)     (Shear)      (Axial force)¤ Р    φ 

    29

       Š ý   ¤.  I (Strength I)

         ý     ý   Š ¤

     .  II (Strength II)      ý   

    ¤ ý     Š  ý¤

    30

    .  III (Strength III)         

    Š  90km/h¤ Š ž      ž ¤

     .  IV (Strength IV)            ¤    Ð    γ i   Р 

      φ         60m¤ ž  31

         Р      Š ý   Р 

     þ   Š   ¤    Ð   

    Р        I Ð         IV       ¤.  V (Strength V)         

    Š

      90km/h¤

     

        V Š      III 32Lecturer: SOK RASMEY, MEng.

        Š       Š   Ð   ð   Ð     

  • 8/9/2019 1. Bridge Engineering Khmer

    42/63

       Ð   ð   ¤

    ..      (Extreme Event Limit State)

         Ð   ð    Р    ž         ð       [A1.3.2.5]¤     

      ý   Р   ý   ¤      žž   Ð [C1.3.2.5]¤

    33

      š  ž          TU, TG, CR, SH  SE     šŠ   [C3.4.1]¤    φ = 1.0¤

    .  I (Extreme Event I)            ¤

             WA    FR¤

           ž       Š ý   Р ¤          [C3.4.1]¤

    34

    Р    ý        ¤ Р   Р   ý [A3.4.1]¤   γ EQ Р  0.0, 0.5  1.0 [C3.4.1]¤

    .  II (Extreme Event II)             ð                   ¤ Р

     

     0.5

        

      ý

          CT   ¤35

    3.3   Ð    

    . (Geometric Design Considerations)

       Ð   ð       Š        3.1¤      Š       3.3¤

    36Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    43/63

    3.1  Ð   ð   37

    3.2 Š  

    38

    3.3   

    39

    3.4   40Lecturer: SOK RASMEY, MEng.

    (Problems) .    Ð  Ð     

  • 8/9/2019 1. Bridge Engineering Khmer

    44/63

    . Ðý ASSHTO LRFD   

    Ð

     

        ¤

    ý

    Ð

     

       

    ?   ð    ?.         Ð   ð    

        Ð   ð      ?

    . Ð          II  III ý    1.0?

    41

        (Fatigue)    (Fracture)?  

     

       

    Ð

      

     1.0?

    . ý   Р     strength III strength IV?

    . Ð    γ p    ý   ?

    .      Ð   1.0  EQ, IC, CT  CV?

    42

    .     Ð      š   š    Ð   18.90m (62ft)¤   Ð      3.3  Š    ?        Š    Ð   ?

    43

    The End

    44Lecturer: SOK RASMEY, MEng.

                         Ð ¤¤

  • 8/9/2019 1. Bridge Engineering Khmer

    45/63

      

    Design Loads

    .     (Introduction)     Р Ð       

       ¤  

      Ð:   (permanentload)   (transient load)¤        

    1

     Ð   ð                  ¤¤            

          ž       Š          ð        ¤.    (Gravity Loads)

       Р        

      ¤  

       

            ¤

    2

    . .    (Permanent Loads)           

        ¤      Ð   ð     Ð   ð      

     (DC)       (DW)       (EV)      (EH)

     

       Ð

       ð

          (ES)

        š  ž    (EL)3

    4.1    (US unit)

    4Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    46/63

         Š     9 3kN/ (0 064ki /ft) 3 0

  • 8/9/2019 1. Bridge Engineering Khmer

    47/63

     9.3kN/m (0.064kip/ft)  3.0m(10ft)¤   ý    3.1kPa (64lb/ft2) 

        Š Ð 3m¤  š   ÐР  

        Š ¤          3.1  3.2¤  

      4.2¤-   (Fatigue Load)     ž    

    9

    4.1   AASHTO HL-93 (US unit)10

    4.1   AASHTO HL-93 (SI unit)11

    4.2 Р  

            ãFatigueå¤          Š     šŠ   ¤ Ð  

    9.0m Ð   0.75    3.1¤

    12Lecturer: SOK RASMEY, MEng.

    Š         ¤ AASTHO [A3 6 1 4 2]

    4.3 Р     Š , p

  • 8/9/2019 1. Bridge Engineering Khmer

    48/63

             AASTHO [A3.6.1.4.2]     ¤  (ADTT)     Š  Ðž

     ADTTSL = p(ADTT)

      p  Ð       Š       4.3¤ ADTT    

          Š     (ADT)¤          4.4¤

    13

    4.4 Ð    

    14

    -       (Pedestrian Loads)     AASTHO[A3.6.1.6] Р  3.6kPa

    ¤        4.1kPa      ¤   

       ý  4.8kPa     (IBC, 2009)¤            /  

    Р  0.73N/mm Р  

      ð

        

          

        [A13.8.2 & 

     A13.9.3]¤    4.2      Ð15

    4.2          16Lecturer: SOK RASMEY, MEng.

         890N   ž¤

      14.6N/mm     300mm    Ð 4 3¤

  • 8/9/2019 1. Bridge Engineering Khmer

    49/63

    ž      ¤-        

    (Deck and Railing loads)

     Ð        AASHTO [A3.6.1.3.3]¤ Р       ¤  Ð  

    ý       ý   ¤(deck overhang) ž       cantilever Р  

    17

                 4.3¤            220kN  

     7.6m (25ft)¤         4.4(a)¤    

               Р  Ð   ð       [A9.4.3]¤         

     Ð  Š           cantilever  4.4(b)¤Ð     

    18

    4.3   19

    4.4 (a)       (b)      20Lecturer: SOK RASMEY, MEng.

        š      AASHTO [A13.7.2]¤  ÐÐ

    4.6   AASHTO [Table A3.6.1.1.2-1]¤

  • 8/9/2019 1. Bridge Engineering Khmer

    50/63

    ÐР         4.5     (TL)¤    

        AASHTO [A13.7.2]¤-  (Multiple Presence)     Š ý  

        Š Ð    Š ý    

      ý    ¤   Š       Ð¤ Р Ð    AASHTO[A3.6.1.1.2] Ð  Ð ¤

    21

    4.5 Р    

    22

    4.6 Ð Ð 

    -        (Dynamic Effects)    4.5   Ð  

    Š ý        ¤Ð             Š ý    

    dynamic load factor, dynamic load allowance    impactfactor¤

    23

    Р Р     4.6   

      Dsta      Ddyn   ¤

      AASHTO     

     

       (Dynamic Load Allowance, DLA)

         4.1 [A3.6.2]¤24Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    51/63

    4.5 25

    4.6  Ð   (Hwang and Nowak, 1991)26

    4.7  (Hwang and Nowak, 1991)

    27

    4.8  (Hwang and Nowak, 1991)

    28Lecturer: SOK RASMEY, MEng.

    Р   ULL+I = UL(1+IM) (4.1)

  • 8/9/2019 1. Bridge Engineering Khmer

    52/63

    4.8  (Hwang and Nowak, 1991)

    29

    4.7 IM

    LL+I L( ) ( )

     ULL+I    UL   IM Ð    4.7

    30

       (Buried Components)  Ð   ð       Р  

      IM = 33(1.0 - 4.1x10-4DE)0% (4.2)

     DE    Ð Ð   ð    (mm)   (Wood Components)¤

            Ð   ð   Ð  ð 

         

            š¤31

    (4.3)

    (4.4)

       (Centrifugal Forces)      

                   ¤    Ð  

     V   r   ¤           4.10¤

     Nowton

       Ð

      32Lecturer: SOK RASMEY, MEng.

    (4.5)

  • 8/9/2019 1. Bridge Engineering Khmer

    53/63

    4.10   ð   33

    (4.6)

      Fr       ( )¤     1.8m  ž   [A3.6.3]¤

       m 

    W    g     (9.807m/s2)¤ 4.6    4.5 

    34

    (4.8a)

    (4.8b)

    (4.7)

    ý         AASHTO[A3.6.3]Р 

    f=4/3

      

      

     f=1.0

       

     v Ð  Ð   m/s, R     Š 35

     Ð   m  Fr    1.8m ž  ¤

     Ð  Š      4/3  Р

      Р  4/3 Ð   ý    (train of truck)¤  (Braking Forces)   V   

      s¤ ¤     (kinetic) 

    36Lecturer: SOK RASMEY, MEng.

    (4 9)

     

  • 8/9/2019 1. Bridge Engineering Khmer

    54/63

    (4.10a)

    (4.10b)

    (4.9)

     FB       m    ¤

     FB      4.6 

    37

    4.11   ð 38

    b Ð Ð   ¤        Ð   AASHTO   Р 90km/h (55mph) = 25m/s (80ft/s)    122m (400ft)¤   

    Р

        25%  Р   Ð Š  [A3.6.4]¤

    39

      1.8m (6ft)  ž   ¤

     Permit     (Permit Vehicles and Miscellaneous Considerations)

          Pennsylvania (PennDOT)         ãumbrella loadså ¤ 4.12          umbrella ¤  PennDOT  Ð ¤   ÐР  907kN  16.8m¤

    ý          California (Caltrans)40Lecturer: SOK RASMEY, MEng.

  • 8/9/2019 1. Bridge Engineering Khmer

    55/63

    4.12 PennDOT umbrella loads (Koretzky et al., 1986).41

    4.13 Caltrans umbrella loads (Cassano and Lebeau, 1978).42

    Р  Ð Ð   ð    ( 4.13)¤

    .    (Lateral Loads)        

    (incompressible fluid) 4.14¤    Bernoulli (upstream)     a          b    

    (4.11)

    43

    4.14      a  b  ý       a     b Р 

    44Lecturer: SOK RASMEY, MEng.

    (4.12)

     (Wind Forces)Š Ð     

  • 8/9/2019 1. Bridge Engineering Khmer

    56/63

    (4.13)

    Р (drag coefficient) Cd Ð     š ¤  Ð    ð    Ð

    45

      š    ¤    Ð   ð   Ð   ¤   š     Š ¤ Р      4.15 ž ¤

      ÐР  Ð 

    Ð

     ¤

    46

    4.15 Š (Velocity profile)47

    (4.14)

     C     ¤      Ð    ¤

    Š Ð  

    Z Ð    ,      von Karman(~0.4), Z0      ,

    (4.15)

    48Lecturer: SOK RASMEY, MEng.

     0  ž    ρ   Š ¤   V0         

            4.15  4.16 

  • 8/9/2019 1. Bridge Engineering Khmer

    57/63

    (4.16)

    (  )  Z0    ¤

       Š ž  Ð  

     D0 Ð   V0 Š 10m(30ft)Р      Р   [mph]¤   Z = 10m

      4.14  V0:(4.17)

    49

    (4.18a)

    (4.18b)

    (4.19)

     4.17     4.18a 

      4.19     4.18b 50

    (4.20)

    (4.21)

    Р AASHTO [A3.8.1.1] Р 

     VDZ Š Ð  Z (mph)[ý     V(Z)       4.14], VB  Š ý   100mph(160km/h), V0  ã  å   š Š            4.8    šžŠ  (mph) 

    51

    4.8   V0  Z0   šŠ žZ0  ã   å      4.8¤

     2.5    0.4  von Karman¤ (V30 /VB) ()  Š Š  100mph (160km/h)¤

     4.19    V0  Z0¤ Š  Ð   ð         

    52Lecturer: SOK RASMEY, MEng.

    Š ý  VB = 100mph ¤     Ð  

     4.22 Ð ý   ¤  

  • 8/9/2019 1. Bridge Engineering Khmer

    58/63

    4.9 ý PB  VB =100mph (160km/h)

    (4.22)

    Š ý   4.9[Table A3.8.1.2.1-1]¤4.9 Р         (Р )¤

    53

     Š  Ð   4.4N/mm(0.3kip/ft)  

      Š  (windward)     2.2N/mm (0.15kip/ft)   Š   (leeward)         Š        (arch components)  4.4N/mm     [A3.8.1.2.1]¤  Š   Š  Ð 

      ð

        -

        (WS)

     

       4.9¤

     Š

       Ð

         Ð   ý    Ð¤

    54

     Š   (WL)¤    Р  1.46N/mm (0.1kip/ft)  1.8m(6ft)  ž     [A3.8.1.3]¤

       (Water Forces)

             Ð   ð   ž       ž  Ð   ð                ¤   šŠ  ý   ž   ¤       Ð ¤

      4.13       =1000kg/m3

    55

    (4.23US)

    (4.23SI)

    (4.24US)

    (4.24SI)

     AASHTO [A3.7.3.1] Р 

      CD Ð    4.10   V  Ð       56Lecturer: SOK RASMEY, MEng.

    4 10 Ð C

            [ft/s(m/s)]¤

     p = ž (Mpa)CL = Рž   4.11¤

  • 8/9/2019 1. Bridge Engineering Khmer

    59/63

    4.10 Р, CD

    ž Ð   ð   ž          

    (4.25SI)

    57

    4.11 Р, C L 

    58

    4.16

     

     Š

     

    .   (Forces due to Deformations)

    ..      (Temperature)     Р         Ð

     Ð   ð   ž( [A3.12.2]  [A3.12.3])¤ 59

       (Uniform temperature)  Ð   ð   ž      ¤       4.17(a)¤  

            (non-

    uniform heating)   (gradient)  Ð   ð   ž   [4.17(b)]¤           ž  ž¤

    4.12    ¤                 Ð¤

    60Lecturer: SOK RASMEY, MEng.

    4.12   

  • 8/9/2019 1. Bridge Engineering Khmer

    60/63

    4.17(a)  (b)   61

           Р  Ð  Ð   ð      Ð   ð    Ð           

       š     šŠ Š  ¤¤                

    62

          Ð   ð    Ð   ð   ¤ Р    (solar)

     ž  ¤    4.13¤  

        ¤  ý        Ð¤   AASTHO [A3.12.3]  

      4.19¤        

     AASTHO¤  T3     63

    4.18 (AASHTO Fig. 3.12.3-1).64Lecturer: SOK RASMEY, MEng.

    4.13 a¤

     A = 300mm  Ð   ð   ž    t

  • 8/9/2019 1. Bridge Engineering Khmer

    61/63

    a    Ð  -0.3  -0.2       (asphalt overlay)¤

          T3  30C¤     

    4.19  A   ž A = 300mm  Ð   ð     

    400mm ¤ Š   A = 100mm 65

       ¤

              Ð Ð    ð      ¤..      

    (Creep and Shrinkage)

     

      

     Ð   ð      ¤     

    66

    4.19  Ð(AASHTO Fig. 3.12.3-2).67

          ¤                Ð   ð   ¤

    .

    .

     

     (Settlement)

         -  Ð  ¤               š  ž   ¤           

    68Lecturer: SOK RASMEY, MEng.

         Ð Ð   ð   ¤  Ð             šÐ          Ð   ð   ¤

    .       (Collision Loads)..     (Vessel Collision)

  • 8/9/2019 1. Bridge Engineering Khmer

    62/63

      Р       consolidation,

    (   )     Ð  ¤          Ð          Ð   ð   ¤

            Ð  

      ð

       

       

    ¤

     Ð

       ð

        

         ž       ¤

    69

               ð    ¤     ð    РР  ð               ¤    ð          AASTHO[A3.14] ¤

    ..        (Rail Collision)         

    70

      ð         ¤ Ð   ð         3.2  3.2¤

              9m  Ð     

          15m          Ð  1800kN   1.2m     [A3.6.5.2]¤..     

    (Vehicle Collision)

      ð             Š        ¤

    71

    .  (Summary) ý        

      AASHTO   ¤              

      Ð   ð   ¤

    72Lecturer: SOK RASMEY, MEng.

     (Problem).   AASTHO   HL-93   Р ? Š  ? ý AASTHO LRFD ž The End

  • 8/9/2019 1. Bridge Engineering Khmer

    63/63

    .  ý     AASTHO LRFD   ž

    ? ¤ РР(multiple presence factor),  m Р    Š ,  p.  Ð   ð   Š  ?

    .

     

     

    Ð

      ?

    .   Š   (traffic lane) Š  Š Ð (design lane) ?

    73 74

    Lecturer: SOK RASMEY, MEng.