[1-2] hydraulic analysis - general background

15
1 Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD 1 [12] General Background Hydraulic Analysis Mohammad N. Almasri http://sites.google.com/site/mohammadnablus/Home Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD What is the Analysis of WDNs? Analysis of WDNs implies taking the following hydraulic parameters into considera9on: o Flow distribu9on and water veloci9es in pipes o Water pressure at nodes In order to be able to analyze a network, you must simulate the water behavior in the WDN To do so, there are two main principles that are u9lized in the network analysis 2

Upload: hatem-abu-asbeh

Post on 28-Oct-2014

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: [1-2] Hydraulic Analysis - General Background

1

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD 1

[1-­‐2]  General  Background  

Hydraulic  Analysis      

 Mohammad  N.  Almasri      

http://sites.google.com/site/mohammadnablus/Home    

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

What  is  the  Analysis  of  WDNs?  

§  Analysis  of  WDNs  implies  taking  the  following  hydraulic  parameters  into  considera9on:  

o  Flow  distribu9on  and  water  veloci9es  in  pipes  

o Water  pressure  at  nodes  

§  In  order  to  be  able  to  analyze  a  network,  you  must  simulate  the  water  behavior  in  the  WDN  

§  To  do  so,  there  are  two  main  principles  that  are  u9lized  in  the  network  analysis  

2

Page 2: [1-2] Hydraulic Analysis - General Background

2

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD 3

Main  Principles  of  WDN  Analysis  

 Con9nuity:  The  algebraic  sum  of  the  flow  rates  in  the  pipes  mee9ng  at  a  node  together  with  any  external  flows  is  zero  

Q1  

Q2  

Q3  

D  (demand)  

Q1  +  Q2  =  Q3  +  D  D  =  Q1  +  Q2  -­‐  Q3  

A  demand  node  The  node  is  connected  to  three  pipes  

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD 4

Main  Principles  of  Network  Analysis  

 Energy  conserva9on:  For  all  paths  around  closed  loops,  the  accumulated  energy  loss  including  minor  losses  minus  any  energy  gain  or  heads  generated  by  pumps  must  be  zero  

hf1

+ hf3

hf2

hf4

A  part  of  a  looped  network  Closed  loop  Given  total  headloss  for  each  link  (pipe)  as  hf  

Assume  counterclockwise  to  be  posiCve  -­‐hf1  –  hf4  +  hf3  +  hf2  =  0  

Page 3: [1-2] Hydraulic Analysis - General Background

3

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

The  Outcome  of  WDN  Analysis  

The  idea  from  employing  the  two  concepts  of  WDNs  analysis  is  to  determine  both  the  flow  in  each  pipe  and  the  pressure  head  at  each  node  by  

simply  developing  and  solving  a  set  of  equa9ons  as  a  func9on  of  pipe  flow  

5

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Branched  WDNs  

6

Page 4: [1-2] Hydraulic Analysis - General Background

4

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Branched  WDNs  with  Two  Supply  Points  

7

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Looped  Networks  

8

Page 5: [1-2] Hydraulic Analysis - General Background

5

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD 9

Main  Principles  of  Network  Analysis  

Pipe   Head  Loss  (m)  1   6.753  2   13.238  3   4.504  4   18.728  5   3.737  6   4.998  7   9.994  8   9.992  

What  are  the  flow  direc9ons  in  pipes  5,  6,  and  8?  

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Example  

 Write  the  con9nuity  and  energy  conserva9on  equa9ons  for  the  following  network:  

10

Page 6: [1-2] Hydraulic Analysis - General Background

6

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Example  

§  First  of  all,  keep  in  mind  two  issues:  o Nodes  provide  water  or  receive  water  o  Links  (pipes)  convey  water  to  nodes  or  from  nodes  

§  General  data  includes:  o Ground  surface  eleva9on  (z)  o Nodal  demand  or  supply  (q)  o  Pressure  head  at  the  source  (P1/γ)  o  Pipe  diameter  (D)  o  Pipe  length  (L)  o Hazen-­‐Williams  coefficients  

11

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Example  

§  Label  the  nodal  demands  and  pipe  flows  in  the  figure  and  assume  flow  direc9ons  

§  This  is  necessary  to  be  able  to  formulate  the  equa9ons  needed  to  analyze  the  network  

12

Page 7: [1-2] Hydraulic Analysis - General Background

7

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Example  

13

Node  ID   Con4nuity  1   Q1  =  q1  2   Q1  =  Q2  +  Q3  +  q2  3   Q2  =  q3  +  Q5  4   Q3  =  q4  +  Q4  5   Q4  +  Q5  =  q5  +  Q6  6   Q6  =  q6  

Loop   Energy  Conserva4on  2  –  5  –  4  –  3   hf2  +  hf5  –  hf4  –  hf3  =  0    

 Solving  these  equa9ons  provides  the  flow  distribu9on  in  the  network  

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Example  

§  Let  us  take  a  numerical  example  that  shows  the  outcome  of  the  hydraulic  analysis  of  this  network  (that  of  example  [5])  

§  The  objec9ve  is  to  inspect  the  solu9on,  reflect  on  the  results  and  make  the  necessary  deduc9ons  

§  The  following  tables  summarize  the  related  data  

14

Page 8: [1-2] Hydraulic Analysis - General Background

8

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Example    Input  Data  

15

 Link  ID   Length  (m)   Diameter  (in)   CHW  1  [1→2]   1,000   10   120  2  [2→3]   1,000   6   120  3  [2→4]   1,000   6   120  4  [5→4]   1,000   6   120  5  [3→5]   1,000   6   120  6  [5→6]   1,000   4   120  

 Node  ID   ElevaCon  (m)   Demand  (CMH)  1   100  (total  head)   -­‐280  2   0   50  3   -­‐5   75  4   3   25  5   8   85  6   12   45  

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Example  Analysis  

16

 Node  ID   Pressure  (m)   Head  (m)  1   -­‐   100  2   89.47   89.47  3   66.21   61.21  4   65.69   68.69  5   48.09   56.09  6   13.17   25.17  

 Link  ID   Flow  (CMH)   Velocity  (m/s)   Headloss  (m/km)  1   280   1.53   10.53  2   124.51   1.9   28.26  3   105.49   1.61   20.79  4   -­‐80.49   1.23   12.6  5   49.51   0.75   5.12  6   45   1.54   30.92  

Page 9: [1-2] Hydraulic Analysis - General Background

9

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Hydraulics  of  Sewers  Just  a  Simplified  Overview  

17

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

A  Sewer  

18

 Sewers  do  not  have  a  full  flow  and  thus  the  hydraulics  of  the  sewers  compare  well  with  the  open  flow  channel  

Page 10: [1-2] Hydraulic Analysis - General Background

10

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

The  Key  Equa9on  Manning  Equa9on  

19

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Hydraulics  of  Sewers  

§  Consider  the  circular-­‐pipe  cross  sec9on  in  the  figure,  where  h  is  the  depth  of  flow  and  θ  is  the  water-­‐surface  angle  

§  The  depth  of  flow,  h,  cross-­‐sec9onal  area,  A,  and  weged  perimeter,  P,  can  be  expressed  in  terms  of  θ  by  the  following  geometric  rela9ons:  

20

Page 11: [1-2] Hydraulic Analysis - General Background

11

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Example  

 Water  flows  at  a  rate  of  4  m3/s  in  a  circular  concrete  sewer  of  diameter  1,500  mm  and  a  Manning  n  of  0.015.  If  the  slope  of  the  sewer  is  1%,  calculate  the  depth  of  flow  and  velocity  in  the  sewer.  θ  =  3.5  radians  

21

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Calcula9on  of  Normal  Depth  Example  

§  A  3-­‐k-­‐diameter  circular  culvert  is  laid  on  a  slope  of  0.005  k/k  and  is  carrying  a  discharge  of  25  cfs  

§  If  the  roughness  coefficient  of  the  culvert  is  0.012,  what  is  the  normal  depth  for  this  case?  

22

Page 12: [1-2] Hydraulic Analysis - General Background

12

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Calcula9on  of  Normal  Depth  Example  

23

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Calcula9on  of  Normal  Depth  Example  

24

Page 13: [1-2] Hydraulic Analysis - General Background

13

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Example  

§  A  sewer  with  a  flow  of  10  cfs  enters  manhole  6.  The  distance  downstream  to  manhole  7  is  400  k  

§  The  finished  street  surface  eleva9on  at  manhole  6  is  166.3  k  and  at  manhole  7  it  is  164.3  k  

§  Note  that  the  crown  of  the  pipe  must  be  at  least  6  k  below  the  street  surface  at  each  manhole  

§  For  a  Manning  coefficient  of  0.013,  find  the  required  standard  pipe  size  to  carry  the  flow  under  (a)  full  flow  and  (b)  one-­‐half  of  full  flow.  The  flow  velocity  must  be  at  least  2  k/s  and  must  not  exceed  10  k/s  

25

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Example  

§  The  fall  of  the  sewer  in  400  k  is  2  k  if  the  street  grade  is  used  as  the  slope  

§  The  ini9al  assump9on  for  S  is  5  k/1000  k  

§  If  this  slope  is  not  sufficient  to  sustain  a  velocity  of  2  fps,  it  will  be  increased  later  (to  increase  velocity)  

§  In  like  manner,  if  the  calculated  velocity  exceeds  10  fps,  the  slope  will  have  to  be  reduced  

26

Page 14: [1-2] Hydraulic Analysis - General Background

14

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Example  

§  Using  Manning’s  equa9on  for  Q  =  10  and  S  =  0.005,  the  closest  diameter  will  be  21  inches  

§  This  pipe  will  support  a  discharge  somewhat  higher  than  the  design  value  of  10  cfs,  but  it  is  the  closest  standard  size  

§  The  velocity  associated  with  a  21-­‐in  pipe  flowing  full  at  a  slope  of  0.005  is  between  4  and  5  fps  and  thus  meets  the  design  criteria  

27

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Par9ally-­‐Full  Flow  

28

 This  table  helps  in  finding  the  design  diameter  of  the  pipe  when  the  flow  encountered  is  not  full  or  when  we  desire  that  the  flow  is  not  to  be  full  

dm d

Page 15: [1-2] Hydraulic Analysis - General Background

15

Fall 2012 – 2013 [1] General Background Mohammad N. Almasri, PhD

Example  

§  The  pipe  size  for  one-­‐half  flow  is  calculated  from  the  equa9on:  

§  From  the  table,  we  note  that  A×R2/3/(dm)8/3  =  0.1558  for  d/dm  =  0.5.  Subs9tu9ng  in  Manning’s  equa9on  gives  dm  =  2.17  k  and  the  closest  standard  pipe  size  is  27  inches  

29