0901 b 8038003042 d

27
7/31/2019 0901 b 8038003042 d http://slidepdf.com/reader/full/0901-b-8038003042-d 1/27 N OVOLAC R ESIN S EPOXY DOW R ESIN S N OVOLAC DOW HIGH-TEMPERATURE, HIGH-PERFORMANCE EPOXY RESINS EPOXY

Upload: rabee-abdelaal

Post on 05-Apr-2018

222 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 1/27

NOVOLACRESINS

EPOXYDOW

RESINSNOVOLAC

DOW

HIGH-TEMPERATURE, HIGH-PERFORMANCE

EPOXY RESINS

EPOXY

Page 2: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 2/27

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

TYPICAL PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Specific Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

FILLERS AND MODIFIERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CURING AGENTS AND CURE SCHEDULES . . . . . . . . . . . . . . . . . 8

CURED RESIN PERFORMANCE DATA . . . . . . . . . . . . . . . . . . . . 11

Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Therm al Proper ties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Physical Proper ties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Electr ical Proper ties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chem ical Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Mechanical Properties at Elevated Temperaturesand When Wet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Accelerated Moisture Resistance . . . . . . . . . . . . . . . . . . . . . . . . 22

SAFETY, HAZARDS AND HANDLING CONSIDERATIONS . . . . 23

ABBREVIATION INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

PRODUCT STEWARDSHIP . . . . . . . . . . . . . . . . . Inside Back Cover

CONTENTS

TABLE OF

CONTENTS

TABLE OF

1

Page 3: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 3/27

INTRODUCTIOND.E.N.* epoxy novolac resins are

thermosetting plastic materials that

provide good strength and chem ical

resistance at high temperatures.

Because of this, these products offer

formulators and fabricators excellent

value as an alternative to bisphenol-A

based epoxies and phenolic res ins.

Figure 1 illustrates how D.E.R.*354 epoxy resin and D.E.N. 431,

D.E.N. 438* and D.E.N. 439 resins

combine the reactivity and versatility

of an epoxy resin with the therm al

stability of a phenol-formaldehyde

based backbone. This unique struc-

ture results in mu lti-epoxy function-

ality and additional reactive s ites,

producing tightly crosslinked sys-

tems that offer the following advan-

tages over bisphenol-A type resins:

• Improved resistance to acids,

bases and solvents• Retention of mechanical proper-

ties at high temper atures and

under wet conditions

• Minimal shrinkage

• Acceptance of a wide range of modi-

fiers, fillers and pigments

• Improved high temperature adhesive

properties

Note: Although D.E.R. 354 is a

bisphenol-F based resin, it is generally

grouped with the D.E.N. resins due its

highly similar molecular structure and

performance in cured systems.

DOWDOW

* Trademark of The Dow Chemical Company.

NOVOLACRESIN

SRESIN

S

NOVOLACEPOXYEPOXY

CH2CH2

O — CH2 — CH — CH2

O

O — CH2 — CH — CH2

O

O — CH2 — CH — CH2

O

n

n = Number of repeating units

Average value for n:

D.E.R. 354 = 0.2

D.E.N. 431 = 0.7

D.E.N. 438 = 1.6

D.E.N. 439 = 1.8

Figure 1 – Molecular Structure of D.E.R. 354, D.E.N. 431, D.E.N. 438

and D.E.N. 4 39 Resins

2

Page 4: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 4/27

The thermal stability of DOW

Epoxy Novolac resins allows the ir

application as adhesives, structural

and e lectrical laminates, coatings

and castings in e levated temperatur e

service.

For example, ease of processing –

coupled with resistance to heat of fric-

tion – makes epoxy novolac adhesives

ideal for use as binders in abrasivesfor grinding and polishing products.

The liquid forms of D.E.R. 354 and

D.E.N. 431 resins and the semi-solid

form of D.E.N. 438 resin facilitate the

prepar ation of pliable pre-pregs for

vacuum bag lamination. In electrical

laminates, the use of epoxy novolacs

improves resistance to hot solder, as

well as providing elevated tem pera-

ture service. (Electrical grade lami-

nates have been m ade using mica,

glass flake and glass fiber reinforce-

ment.) Plus, coatings formulated withepoxy novolacs provide excellent

chemical resistance associated with

an increased crosslink density when

used in a solvent or waterborne

formulation.

APPLICATIONSAPPLICATIONS

In addition, the h igh viscosity of 

D.E.N. 439 resin ( semi-solid state at

room temperature) offers a m eans of 

obtaining good drape and limited tack,

once the solvent has been r emoved

from the pre-impregnated web. Pre-

pregs made with little or no “B” stage

advancement provide good flow prop-

er ties for press lamination. The inher-

ently heat-res istant epoxy novolacresins can also be used to improve

halogenated resins or hardeners in

applications such as structural lami-

nates for the aer ospace and electronic

circuit board industries. And epoxy

novolacs can be combined with car-

bon, glass and Kevlar 1 fibers to create

many types of engineering composites.

Electrical varnishes, encapsulants,

semiconductors and general molding

powders are other applications where

common operating temperatures sug-

gest the use of epoxy novolac resins.Filament wound pipe and storage

tanks, liners for pumps and other

chemical process equipment and cor-

rosion-resistant coatings are typical

applications that take advantage of the

chemical-resistant properties of DOW

Epoxy Novolac resins.

1 Trademark of E.I. du Pont de Nemours & Company.

3

Page 5: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 5/27

PropertyD.E.R. D.E.R. D.E.N. D.E.N. D.E.N. D.E.N. D.E.N. D.E.N. D.E.N.

354LV2 3 5 4 4 31 4 3 8 4 38 -MK7 5 4 3 8-EK8 5 4 38 -A8 5 4 39 4 39 -EK8 5

Epoxide Equivalent

Weight ( EEW)3 160-170 158-175 172-179 176-181 176-181 176-181 176-181 191-210 191-210

Viscosity at 2,000- 3,000- 200- 600- 500- 4,000-

77°F (25°C), cP 3,000 5,500— —

600 1,600 1,200—

10,000

Viscosity at 1,100- 22,500- 15,000-

125°F (52°C), cP— —

1,700 50,000— — —

35,0004 —

Specific Gravity

at 25/ 39°F (4°C)1.19 1.19 1.21 1.22 1.09 1.14 1.14 1.22 1.15

Mettler Softening 118-136

Point, °F (° C)— — — — — — —

(48-58)—

Flash Point

(Pensky-Mar ten 495 (257) 495 (257) 424 (218) 424 (218) 55 (13) 16 (-9) -4 (-20) 424 (218) 16 ( -9)

Closed Cup), °F (° C)

Gardner Color, Max. 3 4 3 2 2 2 2 3 3

Methyl Methyl Methyl

Isobutyl Ethyl Acetone, EthylSolvent, %Weight — — — —

Ketone, Ketone, 15±1—

Ketone,

25±1 15±1 15±1Lbs./ Gallon 9.9 9.9 10.1 10.2 9.2 9.5 9.5 10.2 9.6

(kg/ liter) (1.19) (1.19) (1.21) (1.22) (1.10) (1.14) (1.14) (1.22) (1.15)

1 Typical property values, not to be construed as specifications.2 Low Viscosity.3 Determined using base resin.4 Measured at 160°F (71°C).

TYPICAL

Table 1 – Typical Properties of Selected D. E.N. Res ins 1

PROPERTIES

4

PROPERTIESTYPICAL

Table 1 lists typical proper ties of 

several DOW Epoxy Novolac resins.

VISCOSITYThe high viscosity of D.E.N. 438

and D.E.N. 439 resins at room tem-

perature r equire reduction for some

applications. Th is can be accomplished

in a number of ways. For pre-preg

applications, these resins are offered

in solvent s olutions of methyl ethyl

Page 6: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 6/27

resins (i.e., D.E.R. 331*, D.E.R. 383 or

D.E.R. 332 resin), or the d iglycidyl

ether of bisphenol-F based resins

(i.e., D.E.R. 354).

The use of heat to lower viscosity

is ver y satisfactor y. At 176-194°F

(80-90°C), the resins are fluid enough

for easy mixing with most epoxy curing

agents. Figure 2 illustrates the typical

viscosity/ temperature relationships of 

selected neat resins.

5

ketone (EK). D.E.N. 438 resin is also

offered in acetone (A) or methyl

isobutyl ketone (MK) solutions. Other

special solutions can be made available

for special customer requirements, if 

quantities justify meeting the need.

In cases where solvents cannot be

tolerated, viscosity may be reduced by

heating, the use of diluents, or blend-

ing with oth er low viscosity resins –

including epoxy novolac resins, the

diglycidyl ether of bisphenol-A based

1

10

100

1,000

10,000

100,000

1,000,000

Figure 2 – Viscosity versus Temperature of 

Neat Res ins 1

   V   i  s  c  o  s   i   t  y ,  c   P

Temperature, °F (°C)

1 Laboratory test data, not to be constr ued as specifications.

32 50 68 86 104 122 140 158 176 194 212(0 ) (1 0) (2 0) (3 0) (4 0) (5 0) (6 0) (7 0) (8 0) (9 0) (1 00 )

= D.E.R. 354

= D.E.R. 383

= D.E.N. 431

= D.E.N. 438

= D.E.N. 439

= D.E.N. 438/ 

D.E.R. 332 (75:25)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Figure 3 – Viscos ity of Neat Resin B lends

at 1 2 5 °F (52 °C)1

   V   i  s  c  o  s   i   t  y ,  c   P

Ratio of Blend (D.E.N.:D.E.R.)

1:1 2:1 3:1

= D.E.N. 438/D.E.R. 3

= D.E.N. 438/D.E.R. 3

= D.E.N. 438/D.E.R. 3

Viscosity of 100% D.E.N. 438 = 23,200 cP

Figure 3 shows the s ubstantial

reductions that can be achieved by

blending D.E.N. 438 res in with

lower viscosity resins, as well as the

near proportional increase in viscosit

that occurs as the epoxy novolac

resin content is increased. It sh ould

be noted, however, that blending

with low viscosity res ins or diluentsusually results in some reduction of

elevated temperature per formance

and chemical resistance.

*Trade mark of The Dow Chemical Company.

Page 7: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 7/27

SPECIFIC GRAVITYThe volume of product used is

greater at elevated temperatures due

to the increase in specific gr avity.

The specific gravity of bisphenol-A

based epoxy is lower than that of 

epoxy novolac resin independent of 

temperature. Figure 4 demonstrates

the relationship between specificgravity and temperature, with a

bisphenol-A based resin (D.E.R. 331)

included for comparison.

6

Figure 4 – Spec ific Gravity versu s Tem perature 1

   S  p  e  c   i   f   i  c   G  r  a  v   i   t  y

Temperature, °F (°C)

1 Laboratory test data, not to b e constr ued as specifications.

32 68 104 140 176 212 248(0) (20) (40) (60) (80) (100) (120)

1.08

1.10

1.12

1.14

1.16

1.18

1.20

1.22

1.24

= D.E.R. 331

= D.E.N. 431

= D.E.N. 438

Page 8: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 8/27

MODIFIERS

FILLERS

AND

The fillers and modifiers normally

used with liquid epoxy resins can also

be used with epoxy novolac resins.

For example, polysulfide resins have

been used in the formulation of amine

cured adhesives and silicone res ins

are frequently used to improve flow

and wetting. Polyols, polyesters and

phenolics are among other r esins sug-

gested for use as modifiers.

Fillers can also be used to modify

specific formulation pr oper ties. In

applications that require the protec-

tion of delicate encapsulated parts, the

incorporation of fillers can provide

additional reduction of shrinkage

along with improved adhesion. Like-

wise, metallic fillers can be used to

improve heat transfer, and soft metal

MODIFIERS

FILLERS

AND

fillers, such as aluminum powder, are

added to improve mach inability.

Fibrous fillers improve mechanical

strength , while graphite or m olybde-

num disulfide can r educe friction in

bearings or seals. Abrasive pigments

can be u sed to improve the wear

resistance of sur faces.

The high viscosities of D.E.N. 438

and D.E.N. 439 resins require that

they be heated to 167-212°F (75-100°C)

for filler addition. However, when

viscosity reducing modifiers are also

being used, fillers can be added to the

mix at lower res in temperatures. In

any case, fillers are usually preheated

to 302-392°F (150-200°C) to drive

off moisture.

7

Page 9: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 9/27

MethylTetrahydrophthalicAnhydride (MTHPA)

Dicyandiamide (Dicy)

Nadic MethylAnhydr ide (NMA)

Diethyltoluene-Diamine(DETDA)

Diamino Diphen yl Sulfone(DDS)

Boron TrifluorideMonoethylamine (BF3• MEA)

Diaminocyclohexane (DACH)

Catalyzed with 1.0 phr of 1- (2-hydroxy-propyl) imidazole. Epoxy novolac re sinsheated to 140°F (60°C) before additionof curing agen t. Molds preheated to122°F (50°C).

Testing for thermal properties only. Testsamples made in small aluminum pans.Hardener dissolved by first warmingresin/ hardener blend on hot plate at410°F (210°C). 5.0 phr mix ratio of Dicy.

Catalyzed with 1.0 phr of 1- (2-hydroxy-propyl) imidazole or 1.5 phr benzyl-dimethylamine (BDMA) as accelerator.

Epoxy novolac resins heated to 176°F(80°C) before addition of curing agent.Molds preheated to 122°F (50°C).

Resin, curing agent and molds heated to302°F (150°C) before blending.

Resin preheated to 176-212°F (80-100°C)to dissolve catalyst. Molds preheated to212°F (100°C).

Molds preheated to 122°F (50°C).

Table 2 – Cure Schedules of Common Curing Agents (Used with Neat Resins)

Initial P os t CureCuring Agent Gel Time,

TemperatureTime,

TemperatureComments

Hours°F (°C)

Hours°F (°C)

2

2

2

2

3

4

1

185 (85)

356 (180)

185 (85)

248 (120)

351 (177)

212 (100)

176 (80)

2

+2

2

2

+2

2

+2

2

16

2

302 (150)

392 (200)

392 (200)

302 (150)

446 (230)

347 (175)

437 (225)

482 (250)

302 (150)

350 (177)

CURESCHEDULES

CURING

AGENTS AND

When selecting a curing agent for

use with epoxy novolac resins, the

effect on cured resin proper ties mus t

be considered. Modified amines,

catalytic curing agents and some

anhydrides provide optimum elevated

temperature properties. In add ition,

epoxy novolacs cured with polyamide

hardeners, or aliphatic polyaminesand their adducts, show improve-

ment over similar systems using

bisphenol-A based epoxies. However,

the elevated temperature per formance

is still limited by the performance of 

the curing agent itself.

CURESCHEDULES

CURING

AGENTS AND

8

Page 10: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 10/27

9

Other factors to be considered

when selecting a curing agent include

the pot life and viscosity desired for

the application. If heat is used to

reduce viscosity, then polyamides and

aliphatic polyamines and their adducts

will react extremely fast, re sulting in

too short a pot life to permit batch

mixing. Such systems may, however,be adapted to production operations

by using automatic metering and dis-

pensing equipment.

Modified am ines, latent catalytic

curing agents and most anhydrides

offer sufficient pot life at modestly

elevated temperatures to allow batch

mixing. The liquid anhydrides, such

as Nadic Methyl Anhydride (NMA)

and Methyl Tetrahydrophthalic

Anhydride (MTHPA) are par ticularly

useful because they reduce the viscosity

of the solution as well as pr ovidingexcellent elevated tem perature per-

formance in the cur ed system.

Table 2 lists cure schedules for

some of the more common curing

agents, along with comments on

formulating procedures. Curing

agents and cure schedules were

selected to allow comparison with

other Dow epoxy resin data, not

because they are optimum for use

with epoxy novolac resins.

Figures 5 through 10 show the

relationship between viscosity andcure time for selected epoxy resins

cured with Methyl Tetrahydrophthalic

Anhydride (MTHPA), Dicyandiamide

(Dicy), Diethyltoluene -Diamine

(DETDA) and Diamino Diphenyl

Sulfone ( DDS).

Figure 5 – Viscos ity versus Time at 1 8 5 °F

(8 5 °C) for Resins Cured with MTHPA1

   V   i  s  c  o  s   i   t  y ,  c   P

Time, minutes

0 20 40 60 80 100 1201

10

100

1,000

10,000

100,000

1,000,000

10,000,000

= D.E.R. 354

= D.E.N. 438/D.E.R. 332 (75:25)

= D.E.N. 438

= D.E.R. 383

Figure 6 – Viscos ity versus Time at 3 2 0 °F

( 160 °C) for Resins Cured with Dicy1

   V   i  s  c  o  s   i   t  y ,  c   P

Time, minutes

1 Laboratory test data, not to be constr ued as specifications.

0 10 20 30 40 50 60 70111

10

100

1,000

10,000

100,000

1,000,000

10,000,000

= D.E.R. 354

= D.E.N. 438

= D.E.R. 383

Page 11: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 11/27

1 0

Figure 8 – Viscos ity versus Time at 3 0 2 °F

( 150 °C) for Resins Cured with DDS1

   V   i  s  c  o  s   i   t  y ,  c   P

Time, minutes

1 Laboratory test data, not to be constr ued as s pecifications.

0 20 40 60 80 1001

10

100

1,000

10,000

100,000

1,000,000

10,000,000

= D.E.N. 438

= D.E.N. 439

= D.E.R. 354

= D.E.R. 383

A general discussion of the cur ing

mechanisms and polymer forma-

tions obtained with various curing

agents can be found in the Dow

publication “Formulating with DOW

Epoxy Resin” (Form No. 296-00346).

In addition, this publication includes

formulating guidelines; procedures

for determining equivalent weights

and calculating stoichiometric

ratios; and information on the types

of epoxy products available, along

with suitable applications and th e

reasons behind successful system

performance.

Figure 7 – Viscos ity versus Time at 2 5 0 °F

( 121 °C) for Resins Cured with DETDA1

   V   i  s  c  o  s   i   t  y ,  c   P

Time, minutes

0 20 40 60 80 1001

10

100

1,000

10,000

100,000

1,000,000

10,000,000

= D.E.R. 354

= D.E.R. 383

= D.E.N. 438/D.E.R. 332 (75:25)

= D.E.N. 438

Page 12: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 12/27

Table 3 – Tes t Methods

Property

Rheology of neat resins and formulations

Cure Kinetics (∆ H, onset temperature,

maximum exotherm temperature)

Glass Transition Temperature (Tg)

Therm al Degradation

Coefficient of Linear Thermal Expans ion

(CLTE)

Storage (E') and Loss (E'') M odulus, tan

delta

Flexural Strength, Modulus, Strain

Tensile Strength, Modulus, %Elongation

Liquid Density

Solid Density

Water Absorption

Ther mogravimetr ic Analysis

Dielectric Constant and Dissipation

Factor

Test Method

ASTM D 3418

ASTM D 3418

ASTM E 831

ASTM D 4065

ASTM D 790

ASTM D 638

ASTM D 1475

ASTM D 792

ASTM D 3850

ASTM D 150

Comments

Cup and Bob Rheometer. 12g samples.

Differential Scanning Calorimeter (DSC).

Differential Scanning Calorimeter (DSC). Wet testing

performed on samples after two-week water boil.

2' ' diameter x 1 / 8'' T round coupons exposed to air

convection oven at specified temperature.

Thermomechanical Analyzer (TMA). 1 / 8'' thick samples

Dynamic Mech anical Analyzer (DMA). 1 / 8'' thick 

samples. Wet testing performed on samples after two-

week water boil.

1 / 2'' W x 1 / 8'' T x 3'' L samples, 2'' span.

3 / 4'' W x 1 / 8'' T x 81 / 2'' L samples, routed to 1 / 2'' neck 

width.

Density Cup.

Cured Castings – Liquid displacement method.

1'' W x 1 / 8'' D x 3'' L samples, two-week water boil.

Ther mal Gravimetric Analyzer (TGA).

3'' x 3'' samples.

TEST METHODSThis section provides per forman

data for a wide range of properties i

cured DOW Epoxy Novolac resin sy

tems. Due to the large volume of da

involved, all test methods used have

been listed in Table 3. Unless other

wise noted, all testing was performe

according to the ASTM standar d temethods indicated. In cases where

ASTM method was not used, a brie

description of the procedure is give

Test samples were cured according

the schedules shown in Table 2

(page 8).

PERFORMANCEDATA

CURED

RESINPERFORMANCEDATA

CURED

RESIN

1 1

Page 13: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 13/27

THERMALPROPERTIES

With Glass Transition Temp-

eratures (Tg) ranging from 259-491°F

(126-255°C), DOW Epoxy Novolac

resins offer excellent heat resistance

in cured systems. Table 4 lists the

representative glass transition tem-

peratures for various resin/ curingagent formulations, with data for

D.E.R. 383 (a liquid bisphenol-A

based epoxy resin) provided for

comparison. In addition, Figure 9

graph ically illustrates the wide

range of glass transition tempera-

tures available.

Generally speaking, the higher

the functionality of an epoxy re sin

formulation, the higher the crosslink 

density of the cured product. In

turn, cr osslink density and several

other factors (i.e., cure schedule, cat-

alyst concentration and type, curing

agent type, and stoichiometric ratio

of curing agent and r esin) help

determine the glass transition tem-

perature of a particular formulation.

The h igher glass transition tempera-

tures obtained with epoxy novolacs

suggest the m aintenance of cured

product integrity at elevated temper-

atures. Long-term therm al perform-

ance is also dictated by environmen-

tal exposure. Therefore, environmen-tal conditioning should be used to

determine the long-term thermal

performance of a cured product.

1 2

Table 4 – Repres entative Glass Transition Tem peratures

(Tg) of Formulated Resin Systems 1

Resin Curing Agent Tg, °F (°C)

MTHPA 264 (129)

Dicy 259 (126)

D.E.R. 354NMA 315 (157)

DETDA 273 (134)

DDS 351 (177)

DACH 270 (132)

MTHPA 300 (149)

Dicy 327 (164)

D.E.N. 431NMA 361 (183)

DETDA 360 (182)

DDS 414 (212)

BF3• MEA 361 (183)

MTHPA 300 (149)

Dicy 374 (190)

D.E.N. 438NMA 417 (214)

DETDA 428 (220)

DDS 491 (255)

BF3• MEA 365 (185)

MTHPA 298 (148)

Dicy 383 (195)

D.E.N. 439 NMA 432 (222)

DETDA 410 (210)

DDS 450 (232)

MTHPA 298 (148)

Dicy 316 (158)

D.E.R. 383NMA 354 (179)

DETDA 360 (182)

DDS 428 (220)

BF3• MEA 342 (172)

1 Laboratory test data, not to be constr ued as s pecifications.

Page 14: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 14/27

Table 5 lists percent weight loss

under isother mal conditions and

heat d istor tion temperature for

various DOW Epoxy Novolac resin

and bisphenol-A based D.E.R. 331

resin after standard cur es. The data

sugges t that the D.E.N. resins are

better suited to withstand elevated

ser vice temperatures over long

periods of time.

Table 5 – Typical Thermal Degradation (Pe rcent Weight Los s)

and Heat Distortion Temperatures 1

Figure 9 – Comparative Glass Transition Tem peratures

(Tg) of Formulated Resin Systems 1

Tg, °F (°C)

   R  e  s   i  n   /   C  u  r   i  n  g   A  g  e  n   t   F  o  r  m  u   l  a   t   i  o  n

32(0)

122(50)

212(100)

302(150)

392(200)

482(250)

572(300)

MTHPA

DicyNM A

DETDA

DDSDACH

MTHPA

DicyNM ADETDA

DDSBF3•M EA

MTHPADicy

NM ADETDA

DDS

BF3•M EA

MTHPA

DicyNM A

DETDADDS

MTHPA

DicyNM A

DETDADDSBF3•M EA

D.E.R. 354

D.E.N. 431

D.E.N. 438

D.E.N. 439

D.E.R. 383

Resin

Curing Agent

Temperature

320°F (160°C)

100 Hours

200 Hours

300 Hours

500 Hours

410°F (210°C)

100 Hours

200 Hours

300 Hours

500 Hours

500°F (260°C)

100 Hours

200 Hours

Heat Distortion

Temp., °F ( °C)

1 Laboratory test data, not to be cons trued as specifications.2 Plus 1.5 Parts BDMA.

D=Decomposed

%Weight Loss

D.E.N.

4 3 1

NMA2

0.21

0.00

0.00

0.00

0.67

1.04

1.30

1.55

324 (162)

D.E.N.

4 3 8

NMA2

0.05

0.00

0.01

0.00

0.63

1.07

1.46

2.07

5.20

9.20

378 (192)

D.E.N.

4 3 9

NMA2

0.32

0.34

0.61

1.04

0.35

0.39

0.60

1.20

4.80

9.00

356 (180)

D.E.R.

3 3 1

NMA2

0.12

0.07

0.10

0.10

0.66

1.10

1.50

1.80

5.60

10.20

313 (156)

D.E.N.

4 3 8

DDS

496 (258)

D.E.R.

3 3 1

DDS

387 (197)

D.E.N.

4 3 8

BF3• MEA

0.11

0.08

0.10

0.05

1.73

2.97

3.82

5.02

11.30

13.15

473 (245)

D.E.N.

4 3 9

BF3• MEA

0.42

0.26

0.26

0.26

1.23

2.55

3.25

3.95

10.50

12.40

493 (256)

D.E.R.

3 3 1

BF3• ME

0.36

0.48

0.71

0.86

2.60

4.00

4.90

5.50

19.60

D

334 (168

1 3

Page 15: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 15/27

D.E.R.

3 5 4

158-175

MTHPA/ 

Imidazole

85:1

2/ 185 (85)

2/ 302 (150)

2/ 392 (200)

284 (140)

126 (70)

259 (126)

270 (132)

282 (139)

1.63

18.6 (128)

481 (3,316)

6.0

1.225

D.E.N.

4 3 1

172-179

MTHPA/ 

Imidazole

85:1

2/ 185 (85)

2/ 302 (150)

2/ 392 (200)

300 (149)

124 (69)

293 (145)

302 (150)

313 (156)

1.43

21.0 (145)

502 (3,461)

6.6

1.225

D.E.N.

4 3 8

176-181

MTHPA/ 

Imidazole

85:1

2/ 185 (85)

2/ 302 (150)

2/ 392 (200)

300 (149)

124 (66)

320 (160)

340 (171)

351 (177)

1.49

20.0 (138)

509 (3,509)

6.7

1.224

D.E.N. 438/ 

D.E.R. 3 3 2

(75:25)

175-180

MTHPA/ 

Imidazole

85:1

2/ 185 (85)

2/ 302 (150)

2/ 392 (200)

300 (149)

131 (73)

327 (164)

1.40

20.2 (139)

520 (3,585)

6.1

D.E.N.

4 3 9

191-210

MTHPA/ 

Imidazole

85:1

2/ 185 (85)

2/ 302 (150)

2/ 392 (200)

298 (148)

126 (70)

282 (139)

298 (148)

316 (158)

2.37

21.0 (145)

565 (3,896)

6.3

1.225

D.E.R.

3 8 3

176-185

MTHPA/ 

Imidazole

85:1

2/ 185 (85)

3/ 302 (150)

298 (148)

126 (70)

300 (149)

311 (155)

318 (159)

1.45

18.5 (128)

474 (3,268)

6.7

1.190

PHYSICALPROPERTIES

Tables 6 through 10 indicate

typical physical proper ties of cured

epoxy novolac resin systems formu-

lated with DOW Epoxy Novolac

resins and se lected curing agents.

Data from samples of bisphenol-A

based D.E.R. 383, cured with thesame curing agents, has also been

provided for comparison.

1 4

Table 6 – Typical Physical Properties of Res in Systems Cured with MTHPA/ Imidazole1

Resin

Epoxide Equivalent Weight

(EEW) Range

Curing Agent/ Catalyst

Mix Ratio of Curing Agent:

Catalyst, ph r

Cure Schedule, hours at

°F ( °C)

Glass Transition Temp. (Tg),

°F ( °C)

Coefficient of Linear Thermal

Expansion (CLTE), ppm/ °F

(ppm/ °C)

Dynamic M echanical Analysis

(DMA)

E' onset, °F (°C)

E'' onset, °F (°C)

Tan delta, °F (°C)

Water Absorption, two-week 

water boil, %

Flexural Strength, ksi (MPa)

Flexural Modulus, ksi (MPa)

Flexural Strain at Yield, %

Cured Density, g/ ml

1 Typical proper ty values, not to be construed as specifications.

Page 16: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 16/27

D.E.R.

3 5 4

158-175

NMA/ 

Imidazole

85:1

2/ 185 (85)

2/ 302 (150)

2/ 446 (230)

315 (157)

D.E.N.

4 3 1

172-179

NMA/ 

Imidazole

85:1

2/ 185 (85)

2/ 302 (150)

2/ 446 (230)

361 (183)

D.E.N.

4 3 8

176-181

NMA/ 

Imidazole

85:1

2/ 185 (85)

2/ 302 (150)

2/ 446 (230)

417 (214)

D.E.N.

4 3 9

191-210

NMA/ 

Imidazole

85:1

2/ 185 (85)

2/ 302 (150)

2/ 446 (230)

432 (222)

D.E.R.

3 8 3

176-185

NMA/ 

Imidazole

85:1

2/ 185 (85)

2/ 302 (150)

2/ 446 (230)

354 (179)

1 5

Table 7 – Typical Physical Properties of Resin Systems Cured

with N MA/ Imidazole1

Resin

Epoxide Equivalent Weight

(EEW) Range

Curing Agent/ Catalyst

Mix Ratio of Curing Agent:

Catalyst, ph r

Cure Schedule, hours at

°F (°C)

Glass Transition Temp. (Tg),

°F (°C)

Table 8 – Typical Physical Properties of Resin Systems Cured with DETDA1

Resin

Epoxide Equivalent Weight

(EEW) Range

Curing Agent

Mix Ratio of Curing Agent, phr

Cure Schedule, hours at°F (°C)

Glass Transition Temp. (Tg),

°F (°C)

Coefficient of Linear Th erm al

Expansion (CLTE), ppm/ °F

(ppm/ °C)

Dynamic M echanical Analysis

(DMA)

E' onset, °F (°C)

E'' onset, °F (°C)

Tan delta, °F (°C)

Water Absorption, two-week water boil, %

Flexural Strength, ksi (MPa)

Flexural Modulus, ksi (MPa)

Flexural Strain at Yield, %

Cured Density, g/ ml

1 Typical property values, not to be construed as specifications.

D.E.R.

3 5 4

158-175

DETDA

27.4

2/ 248 (120)

2/ 350 (177)

273 (134)

137 (76)

280 (138)

297 (147)

311 (155)

2.40

15.9 (110)

438 (3,020)

6.8

1.172

D.E.N.

4 3 1

172-179

DETDA

26.6

2/ 248 (120)

2/ 350 (177)

2/ 437 (225)

360 (182)

131 (73)

351 (177)

365 (185)

379 (193)

2.24

15.6 (108)

431 (2,972)

7.1

1.199

D.E.N.

4 3 8

176-181

DETDA

26.3

2/ 248 (120)

2/ 350 (177)

2/ 437 (225)

428 (220)

124 (69)

417 (214)

451 (233)

477 (247)

2.47

16.0 (110)

444 (3,061)

6.1

1.210

D.E.N. 438/ 

D.E.R. 3 32

(75:25)

175-180

DETDA

25.3

2/ 248 (120)

2/ 350 (177)

2/ 437 (225)

421 (216)

149 (83)

484 (251)

2.10

13.0 (90)

420 (2,896)

4.1

D.E.N.

4 3 9

191-210

DETDA

23.3

2/ 248 (120)

2/ 350 (177)

2/ 437 (225)

410 (210)

131 (73)

406 (208)

433 (223)

239 (239)

2.44

16.6 (114)

451 (3,110)

6.9

1.198

D.E.R.

3 8 3

176-185

DETDA

26.0

2/ 248 (120)

2/ 350 (177)

360 (182)

133 (74)

360 (182)

374 (190)

387 (197)

2.35

15.7 (108)

383 (2,641)

6.9

1.140

Page 17: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 17/27

Table 9 – Typical Physical Properties o f Resin Systems

Cured with DDS1

Resin

Epoxide Equivalent Weight

(EEW) Range

Curing Agent

Mix Ratio of Curing Agent, phr

Cure Schedule, hours at

°F (°C)

Glass Transition Temp. (Tg),

°F (°C)

Coefficient of Linear Th erm al

Expansion (CLTE), ppm/ °F

(ppm/ °C)

Dynamic M echanical Analysis

(DMA)

E' onset, °F (°C)

E'' onset, °F (°C)

Tan delta, °F (°C)

Water Absorption, two-week water

boil, %

Flexural Strength, ksi (MPa)

Flexural Modulus, ksi (MPa)

Flexural Strain at Yield, %

1 Typical property values, not to be construed as specifications.

1 6

D.E.N.

4 3 1

172-179

DDS

35.5

3/ 350 (177)

2/ 482 (250)

414 (212)

361 (183)

390 (199)

432 (222)

3.40

20.6 (142)

470 (3,241)

7.1

D.E.N.

4 3 8

176-181

DDS35.5

3/ 350 (177)

2/ 482 (250)

491 (255)

124 (69)

433 (223)

455 (235)

523 (273)

4.10

19.6 (135)

480 (3,310)

7.0

D.E.N.

4 3 9

191-210

DDS

31.5

3/ 350 (177)

2/ 482 (250)

450 (232)

140 (78)

527 (275)

17.9 (123)

490 (3,378)

7.0

Page 18: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 18/27

D.E.R.

3 5 4

158-175

DACH

17.6

1/ 176 (80)

2/ 350 (177)

270 (132)

128 (71)

262 (128)

275 (135)

297 (147)

1.83

18.7 (129)

494 (3,406)

7.1

1.193

D.E.R. 3 3 2 / 

D.E.R. 3 5 4

(75:25)

168-176

DACH

17.2

1/ 176 (80)

2/ 350 (177)

356 (180)

133 (74)

360 (182)

369 (187)

379 (193)

2.04

17.3 (119)

436 (3,006)

7.1

1.142

D.E.R.

3 8 3

176-185

DACH

17.2

1/ 176 (80)

2/ 350 (177)

352 (178)

119 (66)

342 (172)

369 (187)

378 (192)

1.93

17.7 (122)

420 (2,896)

7.7

1.172

Table 1 0 – Typical Physical Properties of Res in Systems

Cured with DACH 1

Resin

Epoxide Equivalent Weight

(EEW) Range

Curing Agent

Mix Ratio of Curing Agent, phr

Cure Schedule, hours at

°F ( °C)

Glass Transition Temp. (Tg),

°F (°C)

Coefficient of Linear Th ermal

Expansion (CLTE), ppm/ °F

(ppm/ °C)

Dynamic Mechanical Analysis

(DMA)

E' onset, °F (°C)

E'' onset, °F (°C)

Tan delta, °F (°C)

Water Absorption, two-week water

boil, %

Flexural Strength, ksi (MPa)

Flexural Modulus, ksi (MPa)

Flexural Strain at Yield, %

Cured Density, g/ ml

1 Typical property values, not to be construed as specifications.

1 7

Page 19: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 19/27

D.E.R.

3 5 4

MTHPA

3.37

3.34

3.303.29

0.0052

0.0092

0.0135

0.0154

D.E.N.

4 3 1

MTHPA

3.40

3.36

3.323.30

0.0064

0.0109

0.0155

0.0171

D.E.N.

4 3 8

MTHPA

3.45

3.40

3.353.34

0.0076

0.0125

0.0172

0.0189

D.E.N.

4 3 9

MTHPA

3.46

3.42

3.363.35

0.0076

0.0129

0.0176

0.0193

D.E.R.

3 5 4

DETDA

4.38

4.29

4.174.12

0.0093

0.0221

0.0323

0.0349

D.E.N.

4 3 1

DETDA

4.38

4.27

4.134.08

0.0120

0.0261

0.0350

0.0369

D.E.N.

4 3 8

DETDA

4.50

4.38

4.234.17

0.0128

0.0272

0.0361

0.0380

D.E.N.

4 3 9

DETDA

4.50

4.40

4.254.20

0.0114

0.0254

0.0348

0.0369

D.E.N.

4 3 1

DDS

4.50

4.36

4.234.18

0.0167

0.0259

0.0289

0.0289

D.E.N.

4 3 8

DDS

4.86

4.68

4.514.44

0.0207

0.0310

0.0365

0.0370

ELECTRICALPROPERTIES

Table 11 lists typical electrical

properties of cured epoxy novolac

resin systems formulated with DOW

Epoxy Novolac resins and appropri-

ate curing agents.

CHEMICALRESISTANCE

Tables 12 and 13 show the results

of chemical resistance testing con-

ducted on various cured formulations

of both DOW Epoxy Novolac resins

and bisphenol-A based D.E.R. 331

liquid epoxy resins. Test specimens

(3'' x 1'' x 0.125'') were submerged inacids, bases and organic solvents for

120 days at 73°F (23°C) ± 2. The spec-

imens were weighed at inter vals of 7,

28 and 120 days with any changes in

weight re corded.

The high functionality of D.E.N.

438 resin results in a cured system

with a highly crosslinked three-

dimensional structure that is resistant

to chemical and solvent attack. With a

few exceptions, epoxy novolacs sh ow

similar chemical resistance results to

bisphenol-A based resins in aqueous

solutions. In addition, epoxy novolacs

are generally superior in resistance to

organic solvents.

Catalytic cures, which promote the

epoxy-to-epoxy reaction and its resul-

tant stab le ethe r linkage, typically

provide the best all around chemical

and solvent resistance. If conditions of 

cure, formulation or performance dic-

tate the use of other curing agents, the

preferred alternatives are anhydrides

for acid conditions and amines for

alkaline exposure.

Resin

Curing Agent

Dielectric Constant

Frequency, Hz

1.00E+03

1.00E+04

5.00E+041.00E+05

Dissipation Factor

Frequency, Hz

1.00E+03

1.00E+04

5.00E+04

1.00E+05

1 Typical proper ties; not to be constr ued as specifications.

Table 11 – Typical Electrical Properties of Cured Resin Systems 1

1 8

Page 20: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 20/27

Resin

Curing Agent

Days

Sulfuric Acid, 30%

Hydrochloric Acid, 36%

Nitric Acid, 40%

Ammonium Hydroxide, 28%

Acet ic Acid, 25%

Acetone

Toluene

Sodium Hydroxide, 10%

JP4 Fuel

Distilled Water

7

0.32

1.10

0.02

0.44

28

0.52

3.77

0.04

0.79

120

0.80

9.00

0.14

1.15

Table 1 2 – Typical Chemical and Solvent Res istance of Res in Systems Cured with NMA1

D.E.N. 431

NMA

%Weight Change

7

0.44

0.24

0.59

0.77

0.57

0.24

0.07

0.42

0.00

0.55

28

0.68

0.60

1.37

1.31

0.93

1.15

0.14

0.64

0.01

0.97

120

0.77

1.50

3.11

1.92

1.12

5.07

0.32

0.64

0.12

1.13

D.E.N. 438

NMA

%Weight Change

7

0.33

0.26

0.38

0.72

0.58

0.17

0.00

0.45

0.01

0.52

28

0.62

0.49

1.00

1.46

0.91

0.66

0.02

0.82

0.04

0.96

120

0.80

1.09

2.05

2.40

1.28

3.43

0.28

1.13

0.15

1.38

D.E.N. 439

NMA

%Weight Change

7

0.33

0.32

0.40

0.67

0.46

4.80

0.06

0.37

0.02

0.52

28

0.83

0.56

1.10

1.24

0.73

13.00

0.09

0.51

0.02

0.82

120

0.55

1.36

1.70

1.84

0.90

22.30

0.28

0.50

0.16

0.87

D.E.R. 3 31

NMA

%Weight Change

7

0.40

0.26

0.450.57

0.53

0.43

0.09

0.50

0.02

0.62

28

1.10

0.49

1.201.22

1.03

1.20

0.17

0.94

0.06

1.20

120

1.20

1.17

1.502.17

1.65

3.20

0.26

1.46

0.23

1.80

D.E.R. 3 3 1

BF3• MEA

%Weight Change

7

0.40

——

0.05

0.03

0.57

28

0.82

——

0.14

0.08

1.18

120

1.53

——

0.64

0.31

2.25

D.E.N. 439

BF3• MEA

%Weight Change

Resin

Curing Agent

Days

Sulfuric Acid, 30%

Hydrochloric Acid, 36%

Nitric Acid, 40%Ammonium Hydroxide, 28%

Acetic Acid, 25%

Acetone

Toluene

Sodium Hydroxide, 10%

JP4 Fuel

Distilled Water

1 Laboratory test data, not to be constr ued as s pecifications.

7

0.40

0.15

0.120.64

0.63

-0.04

0.10

0.53

0.02

0.60

28

0.91

0.45

1.011.35

1.32

0.00

0.20

1.13

0.05

1.43

120

1.58

1.07

2.222.57

2.10

0.20

0.62

1.93

0.26

2.24

Table 13 – Typical Chemical and Solvent Resistance of Resin Systems

Cured with BF3• MEA1

D.E.N. 438

BF3• MEA

%Weight Change

1 9

Page 21: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 21/27

MECHANICALPROPERTIESAT ELEVATEDTEMPERATURESAND WHEN WET

Epoxy novolac resins retain good

overall mechanical properties at ele-

vated temperatures and when wet.Figure 10 shows flexural strengths

ranging from room tem perature to

the glass transition temperature for

selected resin systems. Figures 11

through 13 illustrate flexural modulus,

tensile str ength and tensile modulus

per formance unde r both wet and

dry conditions at room and elevated

temperatures.

Figure 10 – Flexural Strength at Elevated

Temperatures  1

   F   l  e  x  u  r  a   l   S   t  r  e  n  g   t   h ,

   k  s   i

Temperature, °F (°C)

32 77 122 167 212 257 302 347 392 437 482 527(0) (25) (50) (75) (100) (125) (150) (175) (200) (225) (250) (275)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

0

17

34

52

69

86

103

121

138

155

172

MP  a

= D.E.R. 331/DDS

= D.E.N. 438/DDS

= D.E.N. 438/NMA/BDMA

Figure 11 – Flexural Modulus Under Various

Tem perature/ Moisture Conditions 1

Resin/ Curing Agent Formulation1 Laboratory test data, not to be constr ued as specifications.2 Wet = Two-week wate r bo il.3 Hot = 300°F (149°C).

   F   l  e  x  u  r  a   l   M  o   d  u   l  u  s ,

   k  s   i

MP  a

D.E.N.

431/DDS

D.E.N.

438/DDS

= Room Temperature/Dry

= Room Temperature/Wet2

= Hot/Dry3

= Hot/Wet2, 3

0

100

200

300

400

500

600

0

690

1,379

2,069

2,759

3,449

4,138

D.E.N.

438/D.E.R

332/MTHPA

D.E.N.

438/D.E.R.

332/DETDA

2 0

Page 22: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 22/27

2 1

Figure 12 – Tens ile Strength Under Various

Tem perature/ Moisture Conditions 1

Resin/ Curing Agent Formulation

   T  e  n  s   i   l  e   S   t  r  e  n  g   t   h ,  p  s   i

MP  a

D.E.N.431/DDS

D.E.N.438/DDS

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

0

14

28

41

55

69

83

97

= Room Temperature/Dry

= Room Temperature/Wet2

= Hot/Dry3

= Hot/Wet2, 3

Figure 13 – Tensile Modulus Unde r Various

Tem perature/ Moisture Conditions 1

Resin/ Curing Agent Formulation1 Laboratory test data, not to be constr ued as specifications.2 Wet = Two-week wate r b oil.3 Hot = 300°F (149°C).

   T  e

  n  s   i   l  e   M  o   d  u   l  u  s ,

   k  s   i

MP  a

D.E.N.431/DDS

D.E.N.438/DDS

0

100

200

300

400

500

0

690

1,379

2,069

2,759

3,449

345

1,035

1,724

2,414

3,104

50

150

250

350

450

= Room Temperature/Dry

= Room Temperature/Wet2

= Hot/Dry3

= Hot/Wet2, 3

Page 23: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 23/27

ACCELERATEDMOISTURERESISTANCE

Table 14 shows the effects of 

exposure to high temperature and

pressur e on coupons formulated

from D.E.N. 438 and D.E.R. 331

resins cured with various curing

agents. The test specimens were sub-

 jected to 250°F (121° C) and 15 ps i

(0.103 MPa) for 500 hours in a steam

generating autoclave.

In vir tually all cases , the D.E.N.

438 epoxy novolac res in maintained

highe r post-test values for flexural

strength, flexural modulus and glass

transition tem perature. For example,

in coupons cured with BF3• MEA,

D.E.N. 438 resin retained nearly 90

percent of its pre -test flexural strength,

while th e b isphenol-A based D.E.R.

331 resin retained only 18 percent

due to some stres s cracking in the

samples. The one exception was the

flexural strength of coupons cured

with DDS.

Table 14 – Moisture Resistance, 50 0 Hours Exposure at 2 5 0 °F (12 1 °C)

and 15 psi (0.103 MPa) 1

Resin

Curing Agent

%Weight Increase @ 500 Hours

Flexural Strength, ksi (MPa)

Pre-exposure

Post-exposure

%Retention

Flexural Modulus, ksi (MPa)

Pre-exposure

Post-exposure

%Retention

Glass Transition Temp. (Tg),

via DSC

Pre-exposure, ° F ( °C)

Post-exposure, °F (°C)

%Retention

D.E.N. 43 8

NMA2

2.21

20.7 (143)

13.7 (95)

66

542 (3,738)

491 (3,386)

91

383 (195)

322 (161)

82

D.E.R. 3 3 1

NMA2

3.68

23.1 (159)

16.9 (48)3

30

504 (3,476)

477 (3,290)3

95

316 (158)

226 (108)

68

D.E.N. 438

DDS

4.19

21.2 (146)

13.5 (93)

64

549 (3,786)

461 (3,179)

84

417 (214)

318 (159)

74

D.E.R. 3 31

DDS

4.34

23.4 (161)

16.4 (113)

70

493 (3,400)

437 (3,014)

89

340 (171)

277 (136)

80

D.E.N. 43 8

BF3• MEA

3.37

16.4 (113)

14.5 (100)

88

559 (3,855)

506 (3,490)

90

415 (213)

318 (159)

75

D.E.R. 3 3 1

BF3• MEA

2.70

18.1 (125)

3.3 (23)3

18

490 (3,380)

405 (2,793)3

83

327 (164)

261 (127)

77

2 2

1 Laboratory test data, not to be constr ued as s pecifications.2

Plus 1.5 parts BDMA.3 Sample exhibited some cracking.

Page 24: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 24/27

For Environm ental, Health, Safety

and Handling Considerations of Dow

Products, consult the technical

brochur es “Storage and Hand ling

of DOW Epoxy Resins” (For m No.

296-00312) and “Storage and Handling

of DOW Epoxy Curing Agents”

(Form No. 296-01331), as well as the

respective product Material Safety

Data Sheets ( MSDS). For Dow and

non-Dow products always request,

read and understand s afety, health,

environmental and handling informa-

tion before handling any of these

mater ials. Safety information on sol-

vents, diluents, modifiers, cur ing

agents and other additives for epoxy

formulations are equally important.

Contact your s uppliers for information

on these materials along with specific

safe handling recommendations.

For more information on DOWEpoxy Novolac resins, contact your

Dow sales representative, or call

1-800-441-4369 or 1-517-832-1426.

In Mexico, call 95-800-441-4369.

2 3

SAFETY,

HAZARDS AND

CONSIDERATIONS

SAFETY,

HAZARDS ANDHANDLINGHANDLINGCONSIDERATIONS

Page 25: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 25/27

A – Acetone

BDMA – Benzyldimethylamine

BF3• MEA – Boron Trifluoride• Monoethylamine

DACH – Diaminocyclohexane

DDS – Diamino Diphenyl Sulfone

DETDA – Diethyltoluene-Diamine

DSC – Differential Scanning Calorimeter

EEW – Epoxide Equivalent Weight

EK – Methyl Ethyl Ketone

HDT – Heat Distortion Temperature

MK – Methyl Isobutyl Ketone

MTHPA – Methyl Tetrahydrophthalic Anhydride

NMA – Nadic Methyl Anhydride

phr – Parts Per Hundred Parts Resin

PMCC – Pensky-Marten Closed Cup

TGA – Ther mogravimetric Analysis

TMA – Thermomechanical Analysis

Tg – Glass Transition Temperature

2 4

INDEXINDEXABBREVIATIONABBREVIATION

Page 26: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 26/27

Dow encourages its customers to

review their applications of Dow prod-

ucts from the standpoint of human

health and environmental quality. To

help ensure that Dow products are not

used in ways for which they are not

intended or tested, Dow personnel

will assist customer s in dealing with

ecological and product safety considera-

tions. Your Dow sales repres entative

STEWARDSHIP

can arrange th e proper contacts. Dow

product literature, including Material

Safety Data Sheets (MSDS), should

be consulted prior to use of Dow

products. These may be obtained

from your Dow sales representative,

or by calling 1-800-441-4369 or

1-517-832-1426. In Mexico,

call 95-800-441-4369.

PRODUCTPRODUCTSTEWARDSHIP

Page 27: 0901 b 8038003042 d

7/31/2019 0901 b 8038003042 d

http://slidepdf.com/reader/full/0901-b-8038003042-d 27/27

NOTICE: No freedom from any patent owned by Seller or others is to be inferred. Because use conditions and applicable laws may differ from one location toanother and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate forCustomer’s use and for ensuring that Customer’s workplace and disposal practices are in compliance with applicable laws and other governmental enactments.Seller assumes no obligation or liability for the information in this document. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OFMERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

Published October 1998

For additional informationin the U.S. and Canada, call

1-800-441-4369 or 1-517-832-1426.

In Mexico,call 95-800-441-4369.

The Dow Chemical Company, 2040 Dow Center, Midland, MI 48674

Dow Chemical Canada Inc., 1086 Modeland Rd., P.O. Box 1012, Sarnia, Ontario, N7T 7K7, Canada

Dow Quimica Mexicana, S.A. de C.V., Torre Optima - Mezzanine, Av. Paseo de Las Palmas No. 405, Col. Lomas de

Chapultepec, 11000 Mexico, D.F., Mexico