08 450 pavelka semilab

Upload: rnm2007

Post on 14-Apr-2018

229 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/27/2019 08 450 Pavelka Semilab

    1/21

    Sem iconductorPhysicsLaboratoryCo.Ltd. 1

    Semilab Technologies forSemilab Technologies for450mm Wafer Metrology450mm Wafer Metrology

    Tibor Pavelka

    Semilab Semiconductor PhysicsLaboratory Co. Ltd.

  • 7/27/2019 08 450 Pavelka Semilab

    2/21

    Sem iconductorPhysicsLaboratoryCo.Ltd. 2

    OutlineOutline

    Short introduction to Semilab

    Technologies with potentialfor 450mm

    Non-destructive, capable of in-

    line process control

    Contamination monitoring

    Epi layer monitoring

    Implant monitoring

    Dielectric characterization

    Metal layer characterization

    Characterization of etchedstructures

    Destructive / analytical tools

  • 7/27/2019 08 450 Pavelka Semilab

    3/21

    Sem iconductorPhysicsLaboratoryCo.Ltd. 3

    Short IntroductionShort Introduction Semilab FactsSemilab Facts

    Main activity: Development, manufacturing andmarketing of metrology equipment for thesemiconductor and photovoltaic industries.

    Revenue exceeds $ 50 million (2008)

    Employees: 258

    worldwide, 152

    in Hungary

    Laboratory, office and manufacturing space: 11,000m2,

    about 3,000 m2

    in the US

    76 physicists employed (43 in Hungary) 25 employees

    holding a

    Ph. D.

    in physics

    (5

    in

    Hungary)

    Installed

    base: more than 2,300 units

    Patents: wholly owned

    90, applications

    8,

    lincensed

    41

    Listed as 35th

    among the 50 fastest growing Central-

    East European

    technology companies (Deloitte) in

    2008

  • 7/27/2019 08 450 Pavelka Semilab

    4/21

    Sem iconductorPhysicsLaboratoryCo.Ltd. 4

    History of SemilabHistory of Semilab

  • 7/27/2019 08 450 Pavelka Semilab

    5/21

    Sem iconductorPhysicsLaboratoryCo.Ltd. 5

    History of the Semilab GroupHistory of the Semilab Group

    1990

    2004

    2008

    2008

    2008

    2009

    2009

  • 7/27/2019 08 450 Pavelka Semilab

    6/21Sem iconductorPhysicsLaboratoryCo.Ltd. 6

    Semilab around the WorldSemilab around the World

  • 7/27/2019 08 450 Pavelka Semilab

    7/21Sem iconductorPhysicsLaboratoryCo.Ltd. 7

    Semilab PeopleSemilab People

    Hungary59%

    UK

    Germany1%

    SingaporeChina

    6%

    Japan5%

    France6%

    USA23%

    PhD10%

    PhDstudents

    3%

    University/College

    without PhD59%

    Other28%

    Administrative

    11%

    Engineers

    35%Physicists29%

    Manufacturing

    & Assembly

    24%

    Others

    1%

    Semilab Worldwide Qualifications

    Tasks

  • 7/27/2019 08 450 Pavelka Semilab

    8/21Sem iconductorPhysicsLaboratoryCo.Ltd. 8

    Semilab in European CooperationsSemilab in European Cooperations

    Successful participation in theSEA-NET project

    MetalMap: lifetime monitoring andmetal contamination measurementon bare wafers

    Lead It: contactless sheet

    resistance measurement viajunction photo-voltage technique

    Member of the EEMI450

    Participant in other projects underdevelopment or evaluation

    Becoming an active player inEuropean cooperation

  • 7/27/2019 08 450 Pavelka Semilab

    9/21Sem iconductorPhysicsLaboratoryCo.Ltd. 9

    Contamination Monitoring I.Contamination Monitoring I. Lifetime Measurement (Lifetime Measurement (--PCD)PCD)

    Minority chargecarrier lifetime:effective parameter

    to characterize thepurity ofsemiconductormaterial

    -PCD method:

    simple, robust,powerful techniquefor lifetimemonitoring

    Available in WT

    wafer testers (frombench-top platformto fully automated300mm tool)

    Possible applicationin 450mm lines

    bulkThermal

    equilibrium

    Excitation

    (generationof excess

    chargecarriers)

    Redistribution

    of carriers

    diffusion ofcarriers

    to thesurface

    surface

    recombination

    bulk

    recombination

    surfacediff

    surfdiffbulkmeas

    111

    ++=

    S2

    d

    D

    d

    pn,

    2

    2

    =

    =

    surf

    diff

    D: diffusion constantof minority carriersd: wafer thicknessS: Surface

    recombination velocity

    meas

    : measured lifetimesurface

    : surface recombination lifetimediff

    : characteristic time for diffusion to thesurface from the bulk

    bulk

    : bulk recombination lifetime

  • 7/27/2019 08 450 Pavelka Semilab

    10/21Sem iconductorPhysicsLaboratoryCo.Ltd. 10

    Contamination Monitoring II.Contamination Monitoring II. SPVSPVDiffusion Length MeasurementDiffusion Length Measurement

    Diffusion length: key parameter forsemiconductor characterization,especially for metal contaminationmonitoring

    Fast, non-contact, non-destructivewhole wafer mapping

    Measurement principle:

    Excess charge carrier pairs aregenerated by laser pulse surfacephotovoltage appears

    VSPV

    ~n, VSPV

    : measured surfacephotovoltage, n: number of excesscharge carriers

    Measurement with different lasers

    The following equation is fulfilled:

    : photon flux density

    L: diffusion lengtjh

    1/: penetration depth

    1/ [m]1/(1) 1/(2)L [m]

    VSPV

    ( )( )

    1

    1V

    SPV

    ( )

    ( )

    2

    2V

    SPV

    SPV Plot

    Integrated SPV Measuring Unit

    ComputerSPVelectronics

    Lock-indetection

    Lasers

    Capacitive sensor

    Silicon wafer

    Periodicexcitation

    +=

    1

    LCVSPV

  • 7/27/2019 08 450 Pavelka Semilab

    11/21Sem iconductorPhysicsLaboratoryCo.Ltd. 11

    Epi Layer Monitoring I.Epi Layer Monitoring I. Dopant andDopant andResistivity Profiling by Airgap CVResistivity Profiling by Airgap CV

    EPIMET

    real-time,

    non-contact, non-

    destructiveproduction linecontrol for epiprocesses

    No need for monitor

    wafers

    Pre-treatment isintegrated

    Resistivity and dopantprofile plotting

    Wafer mapping

    Excellent repeatability(

  • 7/27/2019 08 450 Pavelka Semilab

    12/21Sem iconductorPhysicsLaboratoryCo.Ltd. 12

    Epi Layer Monitoring II.Epi Layer Monitoring II. SurfaceSurfaceCharge ProfilingCharge Profiling

    Measurement of n/p,n/n, p/p, p/n epi even

    over buried layers

    Measures

    Dopingconcentration

    Resistivity Depletion layer width

    Surfacerecombinationlifetime

    Conductivity type

    Based on highfrequency AC surfacephoto-voltage

    Illumination

    ~~~~

    Wd

    VsW

    d

    h

    e

    h

    Re

    Rh

    Dark

    Bulk

    p-type

    h

    High frequency surface photo-voltage

    Low intensity:

    Vs

    < 0.05 kT/q

    Wavelength < 400 nm

    Vs

    ~Wd

    ~1/Csc

    Wd-inv = (Nsc)

  • 7/27/2019 08 450 Pavelka Semilab

    13/21Sem iconductorPhysicsLaboratoryCo.Ltd. 13

    Epi Layer Monitoring III.Epi Layer Monitoring III. FastFastGateGate

    Non-penetratingElastic Metal probe

    for rapidmonitoring of epilayers

    EM-probe: non-

    destructive probefor capacitancemeasurements andIV-profiling

    Small tip diameter

    to enable sheetresistance profiling

    CV profiling

  • 7/27/2019 08 450 Pavelka Semilab

    14/21Sem iconductorPhysicsLaboratoryCo.Ltd. 14

    Implant Monitoring I.Implant Monitoring I. CarrierCarrierIlluminationIllumination

    In-line, non-contact,pre-anneal monitoringof

    Implant Dose

    PAI depth

    Junction depth

    BX-3000 Carrier

    IlluminationTechnology

    Generation lasercreates excesscarriers

    Excess carriersgradient forms indexof refraction gradient

    Probe laser reads outindex of refraction to

    determine junctionproperties

    Objective

    lens

    Generation

    laser

    (830 nm red)

    Probe laser(980 nm IR)

    Beam

    splitter

    Cognex

    PatMax

    Vision

    system

    Detector

    Deep

    Shallow

    BX-10 Xj

    measured

    contour

  • 7/27/2019 08 450 Pavelka Semilab

    15/21Sem iconductorPhysicsLaboratoryCo.Ltd. 15

    Implant Monitoring II.Implant Monitoring II. JunctionJunctionPhotoPhoto--VoltageVoltage

    Control the implant andanneal by measuring sheetresistance (Rs

    ) of the

    implanted layer after anneal

    LED generates chargecarriers which spreadlaterally

    Spreading is detected

    capacitively, Rs

    is

    calculated

    Non-contact, non-

    destructive

    Fast, high resolution

    mapping

    Good repeatability

    Good correlation withconventional techniques

    Works from USJs to deepimplants

    Si substrate

    Junction+ ++

    LED

    Pickup electrodes

    0

    200

    400

    600

    800

    1000

    0 200 400 600 800 1000

    Sheetr.4pp[

    Ohm/sq.]

    JPV Sheet resistance [Ohm/sq.]

    Vendor 1

    Vendor 2

  • 7/27/2019 08 450 Pavelka Semilab

    16/21Sem iconductorPhysicsLaboratoryCo.Ltd. 16

    Dielectric Characterization I.Dielectric Characterization I. Spectroscopic EllipsometrySpectroscopic Ellipsometry

    GES5E: R&D Spectroscopic Ellipsometer

    to

    meet requirements of emerging technologies

    /

    materials

    Measures complex reflectance ratio

    Parameters:

    Spectral range:

    from 190 nm to 2.5 m high resolution

    and/or fast measurement mode

    Unique combination with further

    techniques:

    Grazing X-Ray Reflectance

    FT Infra-Red Spectroscopic Ellipsometry

    up to

    33 m

    Adsorption, EPA: Ellipsometric

    Porosimeter

    (EP)at atmospheric pressure

    ( )Tknfer

    r i

    s

    p,,tan ===

    cos,tan

    cos

    tan

    Wavelength

  • 7/27/2019 08 450 Pavelka Semilab

    17/21Sem iconductorPhysicsLaboratoryCo.Ltd. 17

    Dielectric Characterization II.Dielectric Characterization II. NonNon--Contact MOS CV (VQ) for SiOContact MOS CV (VQ) for SiO22 and Highand High--

    Non-destructivemeasurement technique toreplace traditional C-Vmeasurements for qualifying

    oxide or other dielectricalong with interfaceproperties

    in silicon wafers

    Measured parameters

    Tox

    : Electrical oxidethickness

    Vfb

    : Flatband

    voltage

    Dit

    : Interface state density

    Qm

    : Mobile charge

    Vox

    : Oxide voltage

    Qeff

    : Effective charge

    Etunnel

    : Tunneling electric

    field

    Vs

    : Surface potential

    Vsurf

    : Surface voltage

    Vtunnel

    : Tunnel voltage

    Hight throughput: completeanalysis in 15 minutes

    Corona discharge Kelvin Probe

    Illumination

    VQ curve Tox

    map

  • 7/27/2019 08 450 Pavelka Semilab

    18/21Sem iconductorPhysicsLaboratoryCo.Ltd. 18

    Dielectric Characterization III.Dielectric Characterization III. Near FieldNear FieldScanning Microwave Microscope forScanning Microwave Microscope forLowLow--

    Non-contact microwavetechnique to measure thedielectric constant of low-k

    materials on productionwafers

    Potential uniqueapplication: sidewalldamage monitoring

    Near field antenna (10mtip size

  • 7/27/2019 08 450 Pavelka Semilab

    19/21Sem iconductorPhysicsLaboratoryCo.Ltd. 19

    LowLow-- and Metal Layer Characterizationand Metal Layer Characterization Surface Acoustic WaveSurface Acoustic Wave

    Non-contact, non-

    destructive tool toobtain

    Layer thickness

    Bilayer thickness

    Material properties(resistivity, grain size)

    Laser excitation

    generates acousticwaves whichpropagate

    Propagation ismonitored, waveformand spectrum isanalyzed

    1. Dark signal before waveexcitation.

    2. Wave excitation with stripedpattern.

    3. Wave motion and diffractionof probe beam to detector. Waveform and frequencyspectrum.

  • 7/27/2019 08 450 Pavelka Semilab

    20/21Sem iconductorPhysicsLaboratoryCo.Ltd. 20

    Characterization of 3D Etched Structures andCharacterization of 3D Etched Structures and

    ThrenchesThrenches Model Based Infrared ReflectometryModel Based Infrared Reflectometry

    Thickness, depth,CD, and composition

    can be determined

    Sample is illuminatedby IR light

    Reflections &absorptions from

    trenches and filmsdetermine shape ofreflectance spectrum

    Spectrum is analyzed

    with a model of thesample structure,and parameters aredetermined by fittingthe model spectrum

    Reflectance Spectrum

    Interferencefringes

    Absorpt ionbands

    Exp. Data

    Model Fit

    Reflectanc

    e

    Wavenumber (cm-1)

    Layers ofInterest

    45Infrared

    Light

    1.4

    20

    micronswavelength

    Detector

  • 7/27/2019 08 450 Pavelka Semilab

    21/21

    Sem iconductorPhysicsLaboratoryCo.Ltd. 21

    Destructive / Analytical ToolsDestructive / Analytical Tools

    Potential for 450 mm

    DLTS: Deep Level

    TransientSpectroscopy forcontamination analysis

    LST: Light Scattering

    Tomography for bulkmicrodefectcharacterization

    SIRM: ScanningInfrared Microscopy forbulk defectcharacterization

    SRP: Sheet ResistanceProfiling