07 method of variation of parameters

Upload: tinkug163

Post on 07-Apr-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 07 Method of Variation of Parameters

    1/37

    We assume a particular solution of

    1 2cos sin

    ax ax

    Ly k e bx k e bx as 1 2cos sin

    ax ax

    py y A e bx A e bx

    We assume a particular solution of

    0 1( ... )

    ax n

    nLy e b b x b x

    as 0 1( ... )ax n

    p ny y e A A x A x

    We also use multiply by the least power ofx

    rule in case any term of the Given RHS is a

    part of the C.F.

  • 8/3/2019 07 Method of Variation of Parameters

    2/37

    Example8 Find the general solution of

    the d.e.

    2 2 sinx

    y y y e x Solution We first find the complementary

    function.

    Auxiliary Equation: 2 2 2 0m m Roots: m =

    Hence theComplementary function is

    1 2( cos sin ),

    x

    hy e c x c x c

    1, c

    2arbitrary constants

    1 i

  • 8/3/2019 07 Method of Variation of Parameters

    3/37

    Now we find the particular solution.

    As sinx

    e x is a part of the C.F., we take a

    particular solution as

    1 2( cos sin )

    x xy x A e x A e x

    1 2 2 1[( ) cos ( ) sin ]x xDy x A A e x A A e x

    1 2( cos sin )

    x xA e x A e x

    2

    2 1[2 cos 2 sin ]x xD y x A e x A e x 1 2 2 1[2( ) cos 2( ) sin ]

    x xA A e x A A e x

    2

    -2

    1

    Adding, we get

  • 8/3/2019 07 Method of Variation of Parameters

    4/37

    2( 2 2)D D y

    2 12 cos 2 sin

    x xA e x A e x

    sin

    x

    e x gives

    1 22 1, 2 0A A

    1 2

    1, 0

    2A A or

    Hence a particular solution is cos2

    x

    p

    xy e x

    Hence the general solution ish p

    y y y

    i.e. 1 2( cos sin )x

    y e c x c x cos2

    xxe x

    c1, c2 arbitrary constants

  • 8/3/2019 07 Method of Variation of Parameters

    5/37

    The method of Variationof Parameters

    In this lecture we discuss a general method offinding a particular solution of a non-

    homogeneous l.d.e. (whether it is constant

    coefficient equation or not).

  • 8/3/2019 07 Method of Variation of Parameters

    6/37

    Consider the second order l.d.e.

    ( ) ( ) ( )..(*)y P x y Q x y h x

    We assume that we have already found the C.F.

    as

    1 1 2 2( ) ( )y c y x c y x

  • 8/3/2019 07 Method of Variation of Parameters

    7/37

    The Method of Variation of parameters says:

    Take a particular solution of (*) as

    1 1 2 2( ) ( )y v y x v y x (**)

    where v1(x), v2(x) are functions ofx to bechosen such that (**) is a solution of (*).

  • 8/3/2019 07 Method of Variation of Parameters

    8/37

    1 1 2 2( ) ( )y v y x v y x (**)

    Differentiating (**) w.r.t. x, we get

    1 1 2 2 1 1 2 2( ) ( ) ( ) ( )y v y x v y x v y x v y x

    We now choose v1, v2 such that

    1 1 2 2( ) ( ) 0 .....(1)v y x v y x

    Thus1 1 2 2

    ( ) ( )y v y x v y x

  • 8/3/2019 07 Method of Variation of Parameters

    9/37

    Differentiatingy w.r.t. x, we get

    1 1 2 2 1 1 2 2( ) ( ) ( ) ( )y v y x v y x v y x v y x

    Substituting fory,y,y in (*), we get

    1 1 2 2 1 1 2 2

    1 1 2 2

    1 1 2 2

    ( )

    ( ) ( )

    v y v y v y v y

    P x v y v y

    Q x v y v y h x

    The coefficients ofv1

    , v2

    are zero as

    1 1 2 2( ) ( )y v y x v y x

  • 8/3/2019 07 Method of Variation of Parameters

    10/37

    y1,y2 are solutions of the associated

    homogeneous l.d.e.

    ( ) ( ) 0y P x y Q x y

    Thus we get

    1 1 2 2( ) ( ) ( ) ....(2)v y x v y x h x

    Solving (1), (2) we get 1 2,v v

    Integrating, we get 1 2,v v

  • 8/3/2019 07 Method of Variation of Parameters

    11/37

    The two equations satisfied by 1 2,v v

    are1 1 2 2( ) ( ) 0 ...........(1)v y x v y x

    1 1 2 2( ) ( ) ( ) ....(2)v y x v y x h x

    We note that the determinant of the coefficient

    matrix is

    1 2

    1 2

    ( ) ( )

    ( ) ( )

    y x y x

    y x y x

    1 2[ , ]( )W y y x 0

  • 8/3/2019 07 Method of Variation of Parameters

    12/37

    asy1,y2 are LI solutions of the associated

    homogeneous l.d.e. Using Cramers rule, we get

    2

    2

    11 2

    0 ( )

    ( ) ( )

    [ , ]( )

    y x

    h x y x

    v W y y x

    2

    1 2

    ( ) ( )

    [ , ]( )

    h x y x

    W y y x

    1

    1

    2

    1 2

    ( ) 0

    ( ) ( )

    [ , ]( )

    y x

    y x h xv

    W y y x

    1

    1 2

    ( ) ( )[ , ]( )

    h x y xW y y x

  • 8/3/2019 07 Method of Variation of Parameters

    13/37

    Integrating, we get 21

    1 2

    ( ) ( )

    [ , ]( )

    h x y xv dx

    W y y x

    12

    1 2

    ( ) ( )

    [ , ]( )

    h x y xv dx

    W y y x

    And hence a particular solution is

    1 1 2 2( ) ( )py y v y x v y x

  • 8/3/2019 07 Method of Variation of Parameters

    14/37

    Example 1 Find the general solution of the d.e.

    4 sec 2y y x Auxiliary Equation

    24 0m

    Roots: m = 2i

    Hence the complementary function is

    1 2cos 2 sin 2hy y c x c x

    c1, c2 arbitrary constants

  • 8/3/2019 07 Method of Variation of Parameters

    15/37

    Hence we take a particular solution as

    1 2cos 2 sin 2y v x v x where v1(x), v2(x) are functions ofx to be

    chosen such that the above is a solution of

    the given d.e.

    Differentiating w.r.t. x, we get

    1 2( 2sin 2 ) (2 cos 2 )y v x v x

    1 2cos 2 sin 2v x v x

  • 8/3/2019 07 Method of Variation of Parameters

    16/37

    We now choose v1, v2 such that

    1 2cos 2 sin 2 0 .....(1)v x v x

    Differentiatingy w.r.t. x, we get

    1 2( 2 sin 2 ) (2 cos 2 )y v x v x

    1 2( 4 cos 2 ) ( 4 sin 2 )y v x v x

    1 2( 2 sin 2 ) (2 cos 2 )v x v x

  • 8/3/2019 07 Method of Variation of Parameters

    17/37

    Substituting fory,y,y in the given d.e.,

    we get4 sec 2y y x

    1 2( 4 cos 2 ) ( 4 sin 2 )v x v x

    1 2( 2 sin 2 ) (2 cos 2 )v x v x

    1 2

    4( cos 2 sin 2 ) sec 2v x v x x

    1 2( 2sin 2 ) (2 cos 2 ) sec 2v x v x x

  • 8/3/2019 07 Method of Variation of Parameters

    18/37

    The two equations satisfied by 1 2,v v are

    1 2cos 2 sin 2 0 .....(1)v x v x 1 2

    ( 2sin 2 ) (2 cos 2 ) sec 2 ...(2)v x v x x

    Using Cramers rule, we get

    We note that the determinant of the coefficientmatrix is

    cos 2 sin 2

    2sin 2 2 cos 2

    x x

    x x 2 0

  • 8/3/2019 07 Method of Variation of Parameters

    19/37

    1

    0 sin 2

    sec 2 2 cos 2

    2

    x

    x xv

    1tan2

    2x

    2

    cos 2 0

    2sin 2 sec 2

    2

    x

    x xv

    12

    Integrating, we get1

    ln(sec 2 )4

    x 2v 1

    ln(cos 2 ),4

    x1

    v 1

    2x

    1 1

  • 8/3/2019 07 Method of Variation of Parameters

    20/37

    Hence a particular solution is

    1 2cos 2 sin 2y v x v x 1 1

    [ln(cos 2 )]cos 2 sin 24 2

    x x x x

    Hence the general solution is

    1 2. . cos 2 sin 2i e y c x c x

    c1, c2 arbitrary constants

    h py y y

    1 1[ln(cos 2 )]cos 2 sin 2

    4 2x x x x

    1

    1ln(cos 2 ),

    4v x

    2

    1

    2v x

  • 8/3/2019 07 Method of Variation of Parameters

    21/37

    Example 2 Find the general solution of the d.e.

    2 2( 1) (2 ) (2 ) ( 1)x x y x y x y x We first find the complementary function .

    1

    x

    y y e

    We assume a second LI solution as

    As the sum of the coefficients (of the LHS)2

    ( 1) (2 ) (2 ) 0x x x x

    is one solution of the C.F.

    2 1y y vy where

  • 8/3/2019 07 Method of Variation of Parameters

    22/37

    2

    1

    1 P dxv e dx

    y

    2

    (2 )

    ( 1)

    2

    1x

    dxx x

    x e dxe

    Now

    2

    2( 1)

    xx x

    21

    ( 1)x

    x x

    2 111x x

    Hence 2(2 )( 1)

    xdx

    x xe

    2 1

    (1 )1

    dxx xe

    2

    1 xxe

    x

  • 8/3/2019 07 Method of Variation of Parameters

    23/37

    2(2 )

    ( 1)

    2

    1x

    dxx x

    xv e dx

    e

    Thus

    2 2

    1 1 xx

    xe dx

    e x

    2

    1 1( )

    xe dx

    x x

    1 x

    ex

    Hence2 1

    y vy 1x

    And hence 2 1yx

    is a second LI solution

    of the associated homogeneous d.e.

  • 8/3/2019 07 Method of Variation of Parameters

    24/37

    Hence the C.F. is 1 21x

    y c e cx

    (c1, c2 arbitrary constants)So let a particular solution be 1 2

    1xy v e v

    x

    Differentiating w.r.t. x, we get

    1 2 1 22

    1 1( )

    x xy v e v v e v

    x x

    We now choose v1, v2 such that

    1 2

    10 ....(1)

    xv e vx

    Hence1 2 2

    1( )

    xy v e v

    x

    1

  • 8/3/2019 07 Method of Variation of Parameters

    25/37

    Differentiatingy w.r.t. x, we get

    1 2 1 23 22 1( ) ( )x xy v e v v e vx x

    Substituting fory,y,y in the given d.e.,

    1 2 1 23 2

    2 1( 1)[ ( ) ( )]

    x xx x v e v v e v

    x x

    2

    1 2

    1(2 )[ ] ( 1)

    xx v e v x

    x

    2

    1 2 2

    1

    (2 )[ ( )]x

    x v e v x

    1 2 2

    1( )

    xy v e vx

    we get

  • 8/3/2019 07 Method of Variation of Parameters

    26/37

    1 2 2

    1 ( 1)( ) ....(2)

    x xv e v

    x x

    The two equations satisfied by 1 2,v v are

    1 2

    10 ....(1)

    xv e v

    x

    1 2 2

    1 ( 1)( ) ....(2)

    x xv e v

    x x

    We note that the determinant of the coefficientmatrix is

    2

    1 1xe

    x x

    2

    1x xe

    x

  • 8/3/2019 07 Method of Variation of Parameters

    27/37

    Using Cramers rule, we get

    2

    1

    2

    1

    0

    ( 1) 1

    1( )

    x

    x

    x

    x xv xe

    x

    xe

    2

    2

    0

    1

    1( )

    x

    x

    x

    e

    xe

    x

    v xe

    x

    x

    Integrating, we get 1v ,xe 2v

    2

    2

    x

  • 8/3/2019 07 Method of Variation of Parameters

    28/37

    Hence a particular solution is

    1 2

    1xy v e v

    x

    12

    x

    2

    1 2,

    2

    x xv e v

    Hence the general solution ish p

    y y y

    i.e. 1 21x

    y c e c x 1 2

    x

    c1, c2 arbitrary constants

  • 8/3/2019 07 Method of Variation of Parameters

    29/37

    Example 3 Find the general solution of the d.e.

    2 ln .xy y y e x Auxiliary Equation

    22 1 0m m

    Roots: m = 1, 1 Hence the complementary function is

    1 2( )

    x x

    hy y c e c x e

    c1, c2 arbitrary constants

  • 8/3/2019 07 Method of Variation of Parameters

    30/37

    Hence we take a particular solution as

    1 2

    x x

    y v e v xe

    where v1(x), v2(x) are functions ofx to be

    chosen such that the above is a solution of the

    given d.e.

    Thus here 1 2,x x

    y e y xe

    Wronskian = W = x x

    x x x

    e xe

    e e xe

    2xe

  • 8/3/2019 07 Method of Variation of Parameters

    31/37

    Noting that ( ) lnx

    h x e x we get

    21

    1 2

    ( ) ( )

    [ , ]( )

    h x y xv dx

    W y y x

    121 2

    ( ) ( )

    [ , ]( )

    h x y xv dx

    W y y x

    2

    lnx x

    x

    e x xedx

    e

    lnx x dx 2 2ln

    2 4

    x xx

    2

    lnx x

    x

    e x edx

    e

    ln x dx lnx x x

  • 8/3/2019 07 Method of Variation of Parameters

    32/37

    Hence a particular solution is

    1 2

    x x

    py y v e v xe

    2 2( ln )

    2 4

    xx xx e

    ( ln ) xx x x xe

    223

    ( ln )2 4

    xx x x e

    And the general solution is h py y y i.e.

    1 2

    x xy c e c x e

    2

    23( ln )

    2 4

    xxx x e

  • 8/3/2019 07 Method of Variation of Parameters

    33/37

    Example 4 Find the general solution of the d.e.2

    2 2 .x

    x y x y y x e

    Solution Consider the associated homogeneous

    equation

    zx e

    Note that2

    2,dy d y dyxy xy

    dz dz dz

    2

    2 2 0x y x y y

    We put

    (**)

  • 8/3/2019 07 Method of Variation of Parameters

    34/37

    Auxiliary equation2

    3 2 0m m Roots m = 1, 2

    Solution of Eqn (**) is2

    1 2z zy c e c e

    2

    1 2y c x c x

    c1, c2 arbitrary constants

    i.e. The complementary function of the

    given d.e. is

    Hence the equation (**) becomes

    2

    ( 3 2) 0y ( )

    d

    dz

  • 8/3/2019 07 Method of Variation of Parameters

    35/37

    So we take a particular solution as2

    1 2y v x v x Thus here

    2

    1 2,y x y x

    Wronskian = W =2

    1 2

    x x

    x

    2

    x

  • 8/3/2019 07 Method of Variation of Parameters

    36/37

    Noting that ( )x

    eh x

    x

    We get

    2

    1

    1 2

    ( ) ( )

    [ , ]( )

    h x y xv dx

    W y y x

    1

    2

    1 2

    ( ) ( )

    [ , ]( )

    h x y xv dx

    W y y x

    xedx

    x

    2

    xedx

    x

    x x

    e edx

    x x

    i l l i i

  • 8/3/2019 07 Method of Variation of Parameters

    37/37

    Hence a particular solution is

    2

    1 2py y v x v x

    2x x

    xe ex dx xe x dx

    x x

    And the general solution is h py y y

    i.e.

    2

    1 2y c x c x

    2( )

    xx exe x x dx

    x

    2( )

    xx e

    xe x x dxx