07 bet alpha

Upload: v2304451

Post on 04-Apr-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 07 Bet Alpha

    1/23

    1

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Beta and Alpha

    RL

    Vcc

    ~ ~ ~

    Rs

    vs

    Vcc

    vs

    Rs

    RL

    RL

    VccRs

    vs

    Common base Common emitter Common collector

    Vbe

    BJT configurations

  • 7/30/2019 07 Bet Alpha

    2/23

    2

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Current Gain Mechanism in CEConfiguration

    Each extra hole attracts many electrons

    because they are passing through the base

    Base

  • 7/30/2019 07 Bet Alpha

    3/23

    3

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Common emitter short current gain

    o =

    DnNdeXe

    DpNabW

    Electron diffusion current in the base

    In ~ Dn /(NabW)

    Ip

    ~ Dp

    /(Nde

    Xb

    )

  • 7/30/2019 07 Bet Alpha

    4/23

    4

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Diffusion equation forminority carriers in the base

    Dn d2

    nbdx2

    nb nbonl

    = 0

    n = Aexpx

    Lnb

    +Bexp

    x

    Lnb

    n = A +B + A B( ) xLnb

    For W

  • 7/30/2019 07 Bet Alpha

    5/23

    5

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Diffusion equation again

    n = A +B + A B( ) xLnb+ A +B( ) x

    2

    2Lnb2 + A B( ) x

    3

    6Lnb3

    n = nbe 0( ) nbo[ ] 1xW

    2Lnb2

    + x2

    2Lnb2

    + x3

    6Lnb3

    x

    Wnbe 0( )

    R =2Lnb

    2

    W2 =

    1

    o+

    1

    R

    1

    =DpNabW

    DnNdeXe+

    W2

    2Lnb2

    1

  • 7/30/2019 07 Bet Alpha

    6/23

    6

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Common base current gain

    =Ic

    Ie

    =Ic

    Ine

    Ine

    Ie

    T

    Base transport factor

    T = 1 W

    2

    2Lnb2

  • 7/30/2019 07 Bet Alpha

    7/23

    7

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Example

    Estimate o and R for the following parameter values,typical for Si BJTs: Nde =10

    19cm-3,Nab =2x1017cm-3, n

    = 900 cm2/Vs, p = 300 cm2/Vs, W= 0.1 m,Xe = 0.4

    m,Lnb = 10 m.

  • 7/30/2019 07 Bet Alpha

    8/23

    8

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Solution

    o = 600, R = 20,000.

  • 7/30/2019 07 Bet Alpha

    9/23

    9

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    I-V CharacteristicsCB ConfigurationE B C

    Rc

    n p n

    Forward active mode:Collector current:

    CB current gain:

    Saturation mode:

    Current drops off

    owing to opposing

    injected currents from

    the junctions

    Re

    Vee Vcc

    IcIe

    Ib

    cboec III +=

    1 ec II

  • 7/30/2019 07 Bet Alpha

    10/23

    10

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Graded Base Transistors

    Modern BJTs have a nonuniform doping in the base, with the

    acceptor doping density decreasing towards the collector-basejunction. (Such transistors are called "graded base" transistors.)

    The nonuniform doping leads to a non-uniform hole concentration

    along the base. Hence, the holes diffuse from the emitter side

    of the base toward the collector side of the base. This creates anexcess positive charge at the collector side of the base and an

    excess negative charge at the emitter side of the base.

    This, in turn, leads to a built-in electric field, which pushes minority

    carriers (electrons) injected into the base toward the collector.

    As a consequence, the minority carriers take less time to traverse

    the base and their recombination is less effective.

  • 7/30/2019 07 Bet Alpha

    11/23

    11

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Alpha in graded base transistors

    T = 1 W2

    2fLnb2

  • 7/30/2019 07 Bet Alpha

    12/23

    12

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Alpha and beta

    =

    1, =

    1+

    and Ie

    =Ic

    +IbIc = Ie

    Hence,Ie = Ie +Ib,

    Divide byIe to obtain

    1= + 1/( +1)

    Ie

    = Ib

  • 7/30/2019 07 Bet Alpha

    13/23

    13

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Base modulation

    Weff = WXbe Xbc

  • 7/30/2019 07 Bet Alpha

    14/23

    14

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Emitter current crowding

    Collector contact

    n+n

    p

    n+

    Base contact Base contactEmitter contact

  • 7/30/2019 07 Bet Alpha

    15/23

    15

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Realistic and idealized doping profiles

    . .

    0 0.8 1.6 2.4 3.2

    Distance (m)

    1021

    1019

    1017

    1015

    n+ p nConcentration(cm

    -3

    )

  • 7/30/2019 07 Bet Alpha

    16/23

    16

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Circuit diagram

    Ib

    Vce

    +

    +Vcc

    IcRL

  • 7/30/2019 07 Bet Alpha

    17/23

    17

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    1/)1(/ >>= bc II

    I-V CharacteristicsCE Configuration

    Forward active mode:

    CE current gain:

    Rc

    E

    B

    C

    VccRb

    Vbb Ie

    Ib

    Ic

    ceobc III +=

  • 7/30/2019 07 Bet Alpha

    18/23

    18

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Load line

    0 2.0 4.0 6.0-1.0

    400

    0

    600

    200

    1 A

    2 A

    3 A

    4 A

    5 A

    Base

    current

    Collector-emitter voltage (V)

    Active forwardSaturation

    Cutoff

  • 7/30/2019 07 Bet Alpha

    19/23

    19

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    I-V Characteristics (transistor NPN BCW82)

  • 7/30/2019 07 Bet Alpha

    20/23

    20

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    AIMSpice

    simulation

  • 7/30/2019 07 Bet Alpha

    21/23

    21

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    References

    I. GETREU, Modeling the Bipolar Transistor, Tektronix, Inc., part no. 062-2841-00 (1970)

    K. LEE, M. SHUR, T. A. FJELDLY, AND T. YTTERDAL, Semiconductor DeviceModeling for VLSI, Prentice Hall, Englewood Cliffs, NJ (1993)

    M. SHUR, Physics of Semiconductor Devices, Series in Solid State Physical

    Electronics, Prentice Hall, Englewood Cliffs, NJ (1990)

    S. M. SZE, Physics of Semiconductor Devices, Second Edition, John Wiley& Sons, New York (1981)

    S. M. SZE, Semiconductor Devices. Physics and Technology, John Wiley &Sons, New York (1985)

    R. M. WARNERAND B. L. GRUNG, Transistors Fundamentals for the Integrated-Circuit Engineer, John

    Wiley & Sons, New York (1983)

  • 7/30/2019 07 Bet Alpha

    22/23

    22

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Bibliography

    B. G. STREETMAN, Solid State Electronic Devices, Fifth Edition, PrenticeHall, Englewood Cliffs, NJ (1995)

    Concise and clear undergraduate text on semiconductor devices.

    G. W. NEUDECK, The Bipolar Junction Transistors, Addison WesleyModular Series on Solid State Devices, Vol. III, Reading, MA (1983)

    Undergraduate text with many examples and problems.

    S. K. GHANDHI, VLSI Fabrication Principles, John Wiley & Sons, NewYork (1983)

    Detailed description of transistor fabrication technology.

    P. M. ASBECK, M. F. CHANG, K. C. WANG AND D. L. MILLER,"Heterojunction Bipolar Transistor Technology," in Introduction toSemiconductor Technology. GaAs and Related Compounds, Cheng T. Wang,Editor, John Wiley & Sons, New York (1990)

    good description of HBT technology and device characteristics.

  • 7/30/2019 07 Bet Alpha

    23/23

    23

    [email protected] # 7

    SDM 2, Michael Shur 1999-2009

    Summary

    Electron concentrations at the boundariesof emitter-base and collector-basedepletion region

    nbe = nbo exp Vbe/Vth( )nbc = nbo exp Vbc/Vth( )

    Quasineutrality condition in base p n