03 1 weynand moment resistant joints

71
Design of Joints in Steel Design of Joints in Steel Structures Structures International Seminar International Seminar Norwegian Structural Steel Association Norwegian Structural Steel Association Oslo Oslo 20 April 2005 20 April 2005

Upload: deepakdceme

Post on 04-Aug-2015

43 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: 03 1 Weynand Moment Resistant Joints

Design of Joints in Steel Design of Joints in Steel StructuresStructures

International SeminarInternational Seminar

Norwegian Structural Steel AssociationNorwegian Structural Steel Association

Oslo Oslo –– 20 April 200520 April 2005

Page 2: 03 1 Weynand Moment Resistant Joints

Design Procedures of Welded Design Procedures of Welded and Moment Resistant Jointsand Moment Resistant Joints

Dr.Dr.--Ing. Klaus WeynandIng. Klaus Weynand

PSP PSP -- Prof. Sedlacek & PartnerProf. Sedlacek & PartnerTechnologien im Bauwesen GmbH, AachenTechnologien im Bauwesen GmbH, Aachen

Page 3: 03 1 Weynand Moment Resistant Joints

3

Joints in Steel StructuresJoints in Steel Structures

B AA

C

D

A

A

A

D

C

A

D

Page 4: 03 1 Weynand Moment Resistant Joints

4

Joints in Steel StructuresJoints in Steel Structures

7

Page 5: 03 1 Weynand Moment Resistant Joints

5

Joints in Steel StructuresJoints in Steel Structures

Page 6: 03 1 Weynand Moment Resistant Joints

6

Joints in Steel StructuresJoints in Steel Structures

Page 7: 03 1 Weynand Moment Resistant Joints

7

Joints in Steel StructuresJoints in Steel Structures

Page 8: 03 1 Weynand Moment Resistant Joints

8

Joints in Steel StructuresJoints in Steel Structures

Page 9: 03 1 Weynand Moment Resistant Joints

9

Joints in Steel StructuresJoints in Steel Structures

16 x M 24, 10.9M = 660 kNm

12 x M 30, 10.9

M = 648 kNm

Page 10: 03 1 Weynand Moment Resistant Joints

11

ContentsContents

Basics and BackgroundBasics and BackgroundConcepts, methods, proceduresConcepts, methods, procedures

Determination of joint propertiesDetermination of joint propertiesWorked ExampleWorked Example

BeamBeam--toto--column joints with flush end platecolumn joints with flush end plate

Page 11: 03 1 Weynand Moment Resistant Joints

12

Joints in FramesJoints in Frames

M

MM

Single sidedSingle sided Double sidedDouble sidedjoint configurationjoint configuration joint configurationjoint configuration

Page 12: 03 1 Weynand Moment Resistant Joints

13

Design of JointsDesign of Joints

Old subject of discussionOld subject of discussionSeparate design for members and jointsSeparate design for members and jointsIntensive research activities for more Intensive research activities for more than 20 yearsthan 20 yearsObjective:Objective:

JOINTS MEMBERSJOINTS MEMBERS

Page 13: 03 1 Weynand Moment Resistant Joints

14

Joints as Joints as ““Structural ElementStructural Element””

φ/2 φ/2

φ

joint

Mj,Rd Mb.Rd

member, e.g. beam

φ Sj,ini

φ

EI/L

Members and jointsMembers and jointsResistanceResistanceDuctilityDuctilityStiffnessStiffnessEnergy dissipationEnergy dissipation

Page 14: 03 1 Weynand Moment Resistant Joints

15

Joints as Joints as ““Structural ElementStructural Element””

Joint properties Joint properties

M

Sj

Mj,Rd

φcd

(simplified) designcurve

actual behaviour

Page 15: 03 1 Weynand Moment Resistant Joints

16

Joints in FramesJoints in Frames

CharacterisationCharacterisationM

φ?

? ?

M

φ

12 3

ClassificationClassification

Page 16: 03 1 Weynand Moment Resistant Joints

17

Joints in Frames Joints in Frames

ModellingModelling

IdealisationIdealisation

M

φ

Page 17: 03 1 Weynand Moment Resistant Joints

18

ContentsContents

Basics and BackgroundBasics and BackgroundConcepts, methods, proceduresConcepts, methods, procedures

Determination of joint propertiesDetermination of joint propertiesWorked ExampleWorked Example

BeamBeam--toto--column joints with flush end platecolumn joints with flush end plate

Page 18: 03 1 Weynand Moment Resistant Joints

19

CharacterisationCharacterisation

Determination of joint properties:Determination of joint properties:Experiments (test results)Experiments (test results)„„Curve fittingCurve fitting““FEM calculationsFEM calculationsMechanical modelsMechanical modelsSimplified analytical modelsSimplified analytical models

Page 19: 03 1 Weynand Moment Resistant Joints

20

Characterisation Characterisation

ExperimentalExperimentalJoint properties for one joints onlyJoint properties for one joints onlyTime / money consumingTime / money consumingDatabasesDatabases

Page 20: 03 1 Weynand Moment Resistant Joints

21

Characterisation Characterisation

„„Curve fittingCurve fitting““Data bases of test resultsData bases of test resultsLimited field of applicationLimited field of applicationno extrapolation possibleno extrapolation possible

M

φ

M a b c( )φ φ φ φ= + +2 3

M a b( ) lnφ φ= ??

Page 21: 03 1 Weynand Moment Resistant Joints

22

Characterisation Characterisation

Finite Element MethodFinite Element MethodO.K. for welded joints (open and hollow sections)O.K. for welded joints (open and hollow sections)very complex for bolted jointsvery complex for bolted joints

Page 22: 03 1 Weynand Moment Resistant Joints

23

Characterisation Characterisation

Mechanical modelsMechanical modelsComplex models (nonComplex models (non--linearitieslinearities))Research orientatedResearch orientated

Simplified analytical modelsSimplified analytical modelsSuitable for practical design Suitable for practical design

NM

ϕM

N

Page 23: 03 1 Weynand Moment Resistant Joints

24

Characterisation Characterisation

ENV Annex J of ENV 1993ENV Annex J of ENV 1993BeamBeam--toto--column jointscolumn jointsBeamBeam--toto--beam jointsbeam joints

EN 1993 Part 1.8EN 1993 Part 1.8Column basesColumn basesBeam haunchesBeam haunchesMM--N interactionN interaction

EN 1994EN 1994Composite jointsComposite joints

Page 24: 03 1 Weynand Moment Resistant Joints

25

Characterisation Characterisation

h

boltstensionzone Ft1,Rd

Ft2,Rd

h2h1

shear panel

M

compressionzone end plate

welded connection bolted connection

Component method

Page 25: 03 1 Weynand Moment Resistant Joints

26

Component Method Component Method

Step 1:Step 1:Identification of Identification of componentscomponents

Step 2:Step 2:Determination of Determination of component component propertiesproperties

Step 3:Step 3:Assembly of Assembly of componentscomponents

F F F

E k1 E k2 E k3

F1,RdF2,Rd

F3,Rd

δ δ δ

column webin shear

M

Sj,ini

Mj,Rd

φcd

column webin compression

column webin tension

( )M min F zj,Rd i,Rd= ⋅

SE z

kj,ini

2

i

=⋅

∑ 1

Page 26: 03 1 Weynand Moment Resistant Joints

27

Component Method Component Method

Determination of component propertiesDetermination of component propertiesComponent testsComponent testsFEM calculationsFEM calculationsAnalytical or mechanical modelsAnalytical or mechanical models(complex or simplified)(complex or simplified)

AssemblyAssemblyAlso different levels of complexityAlso different levels of complexity

Page 27: 03 1 Weynand Moment Resistant Joints

28

Basic Joint ComponentsBasic Joint Components

Page 28: 03 1 Weynand Moment Resistant Joints

29

Basic Joint ComponentsBasic Joint Components

Concrete incompression

Normal forces andbending moments

Anchor boltsin tension / shear

Column bases

Page 29: 03 1 Weynand Moment Resistant Joints

30

Component PropertiesComponent Properties

F /4t

Ft

F /4t

F /4t

F /4t

m e

leff

T-stub

ResistanceStiffness

Page 30: 03 1 Weynand Moment Resistant Joints

31

TT--Stub ResistanceStub Resistance

3 failure modes of T3 failure modes of T--stubstub

Mode1:Mode1:Flange yieldingFlange yielding

Mode 2:Mode 2:Combined mechanismCombined mechanism

Mode 3:Mode 3:Bolt failureBolt failure

Page 31: 03 1 Weynand Moment Resistant Joints

32

TT--Stub StiffnessStub Stiffness

mm

m m

A A

n

1,25m 1,25m

n

2B2B

Actual behaviourQ Q

F

F F

0,13F0,13F

0,63F

0,63F 0,63F

0,63F

Deformation of T-Stub Deformation of bolts

Separation of Separation of TT--stubstub

Page 32: 03 1 Weynand Moment Resistant Joints

33

TT--Stub StiffnessStub Stiffness

TT--stub in bendingstub in bending

A 1,25 m

0,3235 Fm

0,1765 Fm

m

'1'δ

F2

iii δEkF ⋅⋅=

Page 33: 03 1 Weynand Moment Resistant Joints

34

Assembly of ComponentsAssembly of Components

Based on the internal distribution of Based on the internal distribution of forcesforcesRespecting the following criteriaRespecting the following criteria

Equilibrium of internal and external forcesEquilibrium of internal and external forcesRespect criterion of plasticityRespect criterion of plasticityRespect criterion of maximum deformationRespect criterion of maximum deformationCompatibility of displacements between Compatibility of displacements between components

ththééororèèmemestatiquestatique

components

Page 34: 03 1 Weynand Moment Resistant Joints

35

Assembly of ComponentsAssembly of Components

Application to a member sectionApplication to a member section

H y

M

IyM .

full elastic distributionfull elastic distribution

Page 35: 03 1 Weynand Moment Resistant Joints

36

Assembly of ComponentsAssembly of Components

Application to a member sectionApplication to a member section

fy

max. elastic moment (class 3 section)max. elastic moment (class 3 section)

Page 36: 03 1 Weynand Moment Resistant Joints

37

Assembly of ComponentsAssembly of Components

Application to a member sectionApplication to a member section

fy

max. plastic moment (class 1 or 2 section)max. plastic moment (class 1 or 2 section)

Page 37: 03 1 Weynand Moment Resistant Joints

38

Assembly of ComponentsAssembly of Components

Joints with one bolt row onlyJoints with one bolt row only

M

FRd h

.zFM RdRdj, =

elastic distribution = plastic distributionelastic distribution = plastic distribution

Page 38: 03 1 Weynand Moment Resistant Joints

39

Assembly of ComponentsAssembly of Components

Joints with more than one bolt rowJoints with more than one bolt row

h1

h2

hi

FRd

Fc

M

∑= 2i

1

RdRdj, h

hFM

thick end platesthick end plates

full elastic distributionfull elastic distributionmax. moment = elastic momentmax. moment = elastic moment

Page 39: 03 1 Weynand Moment Resistant Joints

40

Assembly of ComponentsAssembly of Components

Joints with more than one bolt rowJoints with more than one bolt row

M

h1

h2

hi

thin end platesthin end plates

elastic distribution, butelastic distribution, butnot linear for all bolt rowsnot linear for all bolt rows

Page 40: 03 1 Weynand Moment Resistant Joints

41

Assembly of ComponentsAssembly of Components

Joints with more than one bolt rowJoints with more than one bolt row

M

h1

hi

FRd

FRd,i

∑=i

iiRd,Rdj, hFMRdt,iRd, B1,9F ≤

thin end platesthin end plates

plastic distributionplastic distributionplastic moment resistanceplastic moment resistance

Page 41: 03 1 Weynand Moment Resistant Joints

42

Assembly of ComponentsAssembly of Components

Joints with more than one bolt rowJoints with more than one bolt row

M

h1

hk

hj

FRd,1

FRd,k

∑ ∑= +=

+=k1,i n1,kj

2j

k

kRd,iiRd,Rdj, h

hF

hFMRdt,kRd, B1,9F >

thin end platesthin end plates

elasticelastic--plastic distributionplastic distributionductile and nonductile and non--ductile bolt rowsductile bolt rows

Page 42: 03 1 Weynand Moment Resistant Joints

43

Assembly of ComponentsAssembly of Components

Joint stiffnessJoint stiffnesswelded, one bolt rowwelded, one bolt row

iii δEkF ⋅⋅=

φ M

k 2

k3

k1

z

zFM j ⋅=z

δδδ 321 ++=φ

j

jinij,

MS

φ=

...=

∑⋅

=

i

2

inij,

k1zES

Page 43: 03 1 Weynand Moment Resistant Joints

44

Assembly of ComponentsAssembly of Components

Joint stiffnessJoint stiffnesstwo or more bolt rowstwo or more bolt rows

φ

φ φ

M

M M

k3,1

keff,1

k1

k1 k1

k2

k2 k2

keq

k3,2

keff,2

k4,1

k4,2

k5,1

k5,2

k10,1

k10,2

z

h1 h2

a)

b) c)

Page 44: 03 1 Weynand Moment Resistant Joints

45

Stiffness ModelStiffness Model

M

φ

M j,Sd

2/3 Mj,Rd

Mj,Rd

Sj*

*

Sj

Sj,ini

1 2 3

φcdφ ' µ φ '

Page 45: 03 1 Weynand Moment Resistant Joints

46

ContentsContents

Basics and BackgroundBasics and BackgroundConcepts, methods, proceduresConcepts, methods, procedures

Determination of joint propertiesDetermination of joint propertiesWorked ExampleWorked Example

BeamBeam--toto--column joints with flush end platecolumn joints with flush end plate

Page 46: 03 1 Weynand Moment Resistant Joints

47

Worked ExampleWorked Example

Beam-to-column joint with flush end plate

+ +

+ +

M

V15

3

IPE220 HEB140

120

60 10

8030 30

240

4 M16 8.8

140

u=10p=60

5

w=

Determination of - Design moment resistance- Stiffness

Page 47: 03 1 Weynand Moment Resistant Joints

48

CoefficientsCoefficients

Column

h h t r mmwc c fc c= − − = − × − × =2 2 140 2 12 2 12 92

( ) ( )A A b t t r mmvc c c fc wc c= − + + = − × × + + × × =2 2 4295 6 2 140 12 7 2 12 12 1307 6 2, ,

mw t

r mmfcc=

−− =

−− × =

20 8

80 72

0 8 12 26 9, , ,

eb w

mmc=−

=−

=2

140 802

30

mt f

Nmm mmpl fcfc yc

M, , ,

,/= =

×=0 25 0 25

12 23511

76912

0

2

γ

Page 48: 03 1 Weynand Moment Resistant Joints

49

CoefficientsCoefficients

Beam

Lever arm:

z h ut

p mmbfb= + − − = + − − =2

220 109 22

60 165 4,

,

MW f

kNmc Rdpl yb yb

M,

,

,, (Klasse 1 Querschnitt) = =

× ×=

γ 0

6285406 235 1011

60 97

+ +

+ +

15

3

IPE220 120

60 10

8030 30

240

4 M16 8.8

140

u=10p=60

5

w=

z

( class 1 section )

Page 49: 03 1 Weynand Moment Resistant Joints

50

CoefficientsCoefficients

mp

mp2End plate

mw t

a mmpwb

w=−

− =−

− × × =2

0 8 280 5 9

20 8 2 3 33 66,

,, ,

m p u t a mmp fb f2 0 8 2 60 10 9 2 0 8 2 5 3514= − − − = − − − × =, , , ,

eb w

mmpp=

−=

−=

2140 80

230

mt f

Nmm mmpl pp yp

M, , ,

,/= =

×=0 25 0 25

15 23511

120172

0

2

γ

Page 50: 03 1 Weynand Moment Resistant Joints

51

CoefficientsCoefficients

λ1

33 6633 66 30

0 529=+

=+

=m

m ep

p p

,,

,

λ22 3514

33 66 300 552=

+=

+=

mm e

p

p p

,,

,

Coefficients for the determinationof the effective length

α = 514,

End plate

Page 51: 03 1 Weynand Moment Resistant Joints

52

CoefficientsCoefficients

Bolts

Ff A

kNt Rdub s

Mb,

, ,,

,= =× × ×

=−0 9 0 9 800 157 10

1 2590 4

3

γ

Ff A

kNv Rdub s

Mb,

, ,.

, (Abscherfläche im Gewinde) = =× × ×

=−0 6 0 6 800 157 10

12560 3

3

γ

( ) ( )L t t h h mmb fc p bolt nut= + + + = + + + =0 5 12 1512

10 13 38 5, ,

( shear plane in the thread )

Page 52: 03 1 Weynand Moment Resistant Joints

53

ComponentsComponents

1. Column web in shear

Resistance

VA f

kNwc Rdvc y cw

M,

,, , ,,

,= =× × ×

×=

−0 93

0 9 1307 6 235 103 11

145 20

3

γ

Transformation parameter β Annahme: β = 1

FV

kNRdwc Rd

,, ,

,1

145 21

145 2= = =β

Stiffness

kA

hmmvc

1

0 385 0 385 1307 61 165 4

3 044= =×

×=

, , ,,

Vwp

Vwp

γ

F

M

z

F

Page 53: 03 1 Weynand Moment Resistant Joints

54

ComponentsComponents

2. Column web in compressionResistance

( ) ( )[ ]( ) ( )[ ]

b min t a t t s t a t u t s

min mm

eff c wc fb f p fc fb f p fc, , ;

, ; , ,

= + + + + + + + + +

= + × × + × + × + + × + + + + =

2 2 2 5 2 5

9 2 2 5 2 2 15 5 12 12 9 2 5 2 15 10 5 12 12 161 27

Reduction factors to consider normal stresses and buckling in the column web panel:

Annahme k minfwccom Ed

y wc: , ; , , ,,

,= −

⎣⎢⎢

⎦⎥⎥

=1 0 1 25 0 5 1 0σ

λ ρpeff c wc c y wc

wc

b d fE t

= =× ×

× ×= ≤ → =0 932 0 932

161 27 92 235210000 7 7

0 543 0 673 1 02, ,,

, , ,, , ,

( ) ( )ω ω= =

+=

+ ×=1 2 2

1

1 1 3

1

1 1 3 161 27 7 1307 60 713

, / , , ,,

, ,b t Aeff c wc wc vc

F k b t f kNRd wc eff c wc wc y wc M, , , , / , , , ,2 1

31 0 713 1 161 27 7 235 10 11 171 9= = × × × × × × =−ω ρ γ

Page 54: 03 1 Weynand Moment Resistant Joints

55

ComponentsComponents

2. Column web in compression

Stiffness

kb t

hmmeff c wc wc

wc2

0 7 0 7 161 27 792

8 589= =× ×

=, , ,

,, ,

F

δF k Ei i i= δ

Page 55: 03 1 Weynand Moment Resistant Joints

56

ComponentsComponents

2. Column web in tension

Resistance

[ ] ( )b min m m e min mmeff t wc, , ; , , ; , , ,= + = × × + × =2 4 1 25 2 26 9 4 26 9 1 25 30 14510π π

( ) ( )ω1 2 2

1

1 1 3

1

1 1 3 1451 7 1307 60 749=

+=

+ ×=

, / , , ,,

, ,b t Aeff t wc wc vc

F b t f kNRd eff t wc wc y wc M, , , , / , , , ,3 0

30 749 1451 7 235 10 11 162 4= = × × × × =−ω γ

Stiffness

kb t

hmmeff t wc wc

wc3

0 7 0 7 1451 792

7 728= =× ×

=, , ,

,, ,

Page 56: 03 1 Weynand Moment Resistant Joints

57

ComponentsComponents

4. Column flange in bending

5. End plate in bending

Equivalent T-Stub

Page 57: 03 1 Weynand Moment Resistant Joints

58

ComponentsComponents

Equivalent T-Stub

F /4t

Ft

F /4t

F /4t

F /4t

m e

leff

Page 58: 03 1 Weynand Moment Resistant Joints

59

ComponentsComponents

4. Column flange in bending

Resistance l b mm vgl Stützensteg auf Zugeff t fc eff t wc, , , , , ( . )= = 131 35

( )[ ] ( )n min e m b w min mmp= − = × =; , ; / ; , , ;1 25 2 30 1 25 26 9 30 30

Reduction factor to consider normal stresses in column web:

[ ]Annahme k min f ffc y fc com Ed y fc: , ; ) / ( ) ,, , ,= − − − =1 0 2 180 2 360 1 0σ

Page 59: 03 1 Weynand Moment Resistant Joints

60

ComponentsComponents

4. Column flange in bending

Mode 1 – Flange yielding

Fl k m

mkNfc Rd t

eff t fc fc pl fc, ,

, , , ,,

,13

4 4 1451 1 769126 9

10 165 9= =× × ×

× =−

Mode 2 – Combined failure

Fl k m B n

m nfc Rd teff t fc fc pl fc t Rd

, ,, , , ,

2

2 2=

+

+

=× × × + × × ×

+× =−2 1451 1 7691 2 90 4 10 30

26 9 3010 134 6

33, ,

,, kN

Mode 3 – Bolt failure

F B kNfc Rd t t Rd, , , , ,3 2 2 90 4 180 8= = × =

Page 60: 03 1 Weynand Moment Resistant Joints

61

ComponentsComponents

Resistance

[ ]F min F F kNRd fc Rd t fc Rd t, , , , ,; ,4 1 2 134 6= =

Stiffness

kl tm

mmeff fc t fc4

3

3

3

3

0 85 0 85 1451 1226 9

10 95= =× ×

=, , ,

,,, ,

4. Column flange in bending

Page 61: 03 1 Weynand Moment Resistant Joints

62

ComponentsComponents

Resistance

[ ] ( )l min m m min mmeff t p p p, , ; , ; , , ,= = × × =2 2 33 66 514 33 66 173 0π α π

[ ] ( )n min e m e min mmp p p= = × =; , ; ; , , ;1 25 30 1 25 33 66 30 30

Fl m

mkNep Rd

eff t p pl p

p, ,

, , , ,,

,13

4 4 173 0 1201733 66

10 247 1= =× ×

× =−

Fl m B n

m nkNep Rd

eff p t pl p t Rd p

p p, ,

, , , , , ,,

,2

33

2 2 2 173 0 12017 2 90 4 10 3033 66 30

10 150 5=+

+=

× × + × × ×+

× =−

[ ]F min F F kNRd ep Rd ep Rd, , , , ,; ,5 1 2 150 5= =

5. End plate in bending

Page 62: 03 1 Weynand Moment Resistant Joints

63

ComponentsComponents

5. End plate in bending

Stiffness

kl tm

mmeff t p p

p5

3

3

3

3

0 85 0 85 173 0 1533 66

13 014= =× ×

=, , ,

,,, ,

Page 63: 03 1 Weynand Moment Resistant Joints

64

ComponentsComponents

7. Beam flange and web in compression

Resistance

( )F M h t kNRd c Rd b fb, , /,

,,7 3

60 97210 8 10

289 2= − =×

=−

Stiffness k7 = ∞

Page 64: 03 1 Weynand Moment Resistant Joints

65

ComponentsComponents

8. Bean web in tension

Resistance b l mmeff t wb eff t p, , , , ,= = 173 0

F b t f kNRd eff t wb wb yb M, , , / , , , ,8 0

3173 0 5 9 235 10 11 218 1= = × × × =−γ

Stiffness k8 = ∞

Page 65: 03 1 Weynand Moment Resistant Joints

66

ComponentsComponents

10. Bolts in tension

Resistance F B kNRd t Rd, , , ,10 2 2 90 4 180 8= = × = T-stub mode 3 for components: „Column flange in bending“ and „End plate in bending“ Stiffness

kAL

mms

b10 1 6 1 6

15738 5

6 525= = × =, ,,

,

Page 66: 03 1 Weynand Moment Resistant Joints

67

Step 3 Step 3 -- AssemblyAssembly

Design moment resistance

Relevant component:

[ ]F min F kNRd Rd i= =. ,134 6 (Stützenflansch auf Biegung) Design plastic moment resistance : M F z kNmj Rd Rd, , , ,= = × × =−134 6 165 4 10 22 263

Design elastic moment resistcane :

M M kNmj el Rd j Rd, , , ,= =23

14 84

Mj,Rd

( column flange in bending )

Page 67: 03 1 Weynand Moment Resistant Joints

68

Step 3 Step 3 -- AssemblyAssembly

Stiffnessφ

S j,ini

Initial stiffness:

S E h kj ini ii

, /= =∑2 1

=× ×

+ + + + +=

−210000 165 4 101

3 0441

8 5891

6 5251

7 7281

10 951

13 01

64132 6,

, , , , , ,

/kNm rad

Idealised stiffness : S S kNm radj j ini= =, / /2 3207

Page 68: 03 1 Weynand Moment Resistant Joints

69

Joints PropertiesJoints Properties

Design moment-rotations curve

φ

M

Sj,ini

S j,ini

SjS j = /ηErsatzsteifigkeit:

M j,Rd

2/3Mj,Rd

Idealised stiffness

Page 69: 03 1 Weynand Moment Resistant Joints

70

Further ApplicationsFurther Applications

Component method:Component method:Joints in Joints in „„slenderslender““ sectionssectionsWeak axis moment resistant joints Weak axis moment resistant joints Joints in hollow sectionsJoints in hollow sections

StandardisationStandardisationEN 1993 part 1.8 EN 1993 part 1.8 „„Design of jointsDesign of joints““

Future research:Future research:Fire resistanceFire resistanceFatigue resistance, earth quake resistanceFatigue resistance, earth quake resistance

Page 70: 03 1 Weynand Moment Resistant Joints

71

Further ApplicationsFurther Applications

Haunches without flanges

Girders with slender webs (instability, buckling)

intermediate stiffeners

Page 71: 03 1 Weynand Moment Resistant Joints

72

Further ApplicationsFurther Applications

Additional stiffeners in extended end plates