01.introduction integrated circuit

Upload: mrinmoy-dey

Post on 04-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 01.Introduction Integrated Circuit

    1/34

    bkdas 1

    Moores Law and material processing Defects in crystals Eutectic phase diagram Solid solubility Homogeneous nucleation

    Heterogeneous Nucleation Growth processes

    INTRODUCTION

  • 7/30/2019 01.Introduction Integrated Circuit

    2/34

    bkdas 2

    High

    Low

    FailureRate

    Co

    st

    1 mm

    1-5 nm High

    Low

    Minim

    um

    FeatureSize

    Comp

    lexity

    1930-

    1950s

    1960s

    1970-90

    VACUUM TUBES

    SEMI CONDUCTOR BASEDTRANSI STORS

    PLANAR TRANSI STORS

    I Cs LSI , VLSI

    SMART STRUCTURES1995-

    NANO STRUCTURES

    2010-

  • 7/30/2019 01.Introduction Integrated Circuit

    3/34

    bkdas 3

    Intel Roadmap for VLSI/ULSI

    300300300200/

    300

    200200Wafer (mm)

  • 7/30/2019 01.Introduction Integrated Circuit

    4/34

    bkdas 4

    Moores LawProcessor power will keep doubling every two years.

    Aft er I ntel CorpAft er I ntel Corp

  • 7/30/2019 01.Introduction Integrated Circuit

    5/34

    bkdas 5

    Aft er I ntel CorpAft er I nt el Corp

    Moores Law

  • 7/30/2019 01.Introduction Integrated Circuit

    6/34

    bkdas 6

    Aft er I ntel CorpAft er I nt el Corp

    Moores Law

  • 7/30/2019 01.Introduction Integrated Circuit

    7/34

    bkdas 7

    Aft er I ntel CorpAft er I ntel Corp

    Moores Law

  • 7/30/2019 01.Introduction Integrated Circuit

    8/34

    bkdas 8

    Processed Silicon Wafer in 2000

  • 7/30/2019 01.Introduction Integrated Circuit

    9/34

    bkdas 9

    EUV Lithography

  • 7/30/2019 01.Introduction Integrated Circuit

    10/34

    bkdas10

    Silicon Crystal

    Crystal Structure :

    Diamond cubicTwo interpenetrating FCC latticesa = 0.543 nmd = distance between atoms

    = 3a/4Atomic density = 8 / a3

    Closed packed plane (111)

    http://jas.eng.buffalo.edu/education/solid/unitCell/home.html

  • 7/30/2019 01.Introduction Integrated Circuit

    11/34

    bkdas11

    Silicon Crystal

  • 7/30/2019 01.Introduction Integrated Circuit

    12/34

    bkdas12

    Silicon Crystal

    100 = 6.8 x 1018 at/m2

    111 = 9.6 x 1018 at/m2

  • 7/30/2019 01.Introduction Integrated Circuit

    13/34

    bkdas13

    Silicon Crystal

  • 7/30/2019 01.Introduction Integrated Circuit

    14/34

    bkdas14

    Silicon Crystal

    K300atSiform/10n

    eVT10x6.321.1)T(Ewhere

    m/)Tk2

    )T(Eexp(T10x9.3n

    316i

    4g

    3

    B

    g2/322i

  • 7/30/2019 01.Introduction Integrated Circuit

    15/34

    bkdas15

    Silicon CrystalCharge Carriers in Doped Si

  • 7/30/2019 01.Introduction Integrated Circuit

    16/34

    bkdas16

    Silicon Crystal

    SinforEvvelocityDrift

    pqnq

    nd

    pn

    Conductivity and Mobility :

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.16

    1E+19 1E+21 1E+23 1E+25 1E+27at/m3

    m2/V-sec

    n

    p1E+19

    1E+21

    1E+23

    1E+25

    1E-05 1E-03 1E-01 1E+01

    Resistivity, ohm-m

    at/m3 p-type

    n-type

  • 7/30/2019 01.Introduction Integrated Circuit

    17/34

    bkdas17

    Mobility in Silicon

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.16

    1.E+19 1.E+21 1.E+23 1.E+25 1.E+27

    at/m3

    m2/V-sec

    n

    p

  • 7/30/2019 01.Introduction Integrated Circuit

    18/34

    bkdas18

    1E+19

    1E+21

    1E+23

    1E+25

    1E-05 1E-03 1E-01 1E+01

    Resistivity, ohm-m

    at/m

    3

    p-type

    n-type

    Resistivity in Silicon

  • 7/30/2019 01.Introduction Integrated Circuit

    19/34

    bkdas19

    Defects in CrystalsTypes of Defects:

    Point Defects vacancy, interstitial, V-I pairs, clusters Line Defects Dislocations edge & screw Planar Defects stacking fault, twin, grain boundary

    Point Defects:

    Interstitial

    Impurity Vacancy

  • 7/30/2019 01.Introduction Integrated Circuit

    20/34

    bkdas

    20

    Defects in CrystalsDislocations:

    Extra planeof atoms

    Edge

    dislocation Screwdislocation

    Screw Dislocation:b ||le to l

    Edge Dislocation:Extra plane of atom is

    present.b r to l

  • 7/30/2019 01.Introduction Integrated Circuit

    21/34

    bkdas

    21

    Defects in Crystals

    Screw Dislocation

  • 7/30/2019 01.Introduction Integrated Circuit

    22/34

    bkdas

    22

    Defects in CrystalsPlanar Defects: Stacking Faults Twins

    Grain Boundaries

    Layer ordering in silicon:A B C A B C along (111) plane.

    Stacking fault:A B C B C A B C A B C

    Twin :A B C A B A C B A

    Grain Boundary:

    Twin plane

    C

    A

    B

  • 7/30/2019 01.Introduction Integrated Circuit

    23/34

    bkdas

    23

    Phase ChangeLiquid state : High entropy and High enthalpySolid state : Low entropy and low enthalpy

    A phase change, say liquid to solid, occurs, if

    F = H - T S is negative

    where F = free energy change for solidificationH = enthalpy change for solidification = latent heat of fusionS = entropy change during solidification

    Above melting point (Tm), F > 0At melting point, F = 0 gives H = Tm SBelow melting point, F = S(Tm-T) < 0

  • 7/30/2019 01.Introduction Integrated Circuit

    24/34

    bkdas

    24

    Phase DiagramComplete Solid Solution:Liquid of composition x onsolidifying at temp T gives solid of

    composition xs and liquid ofcomposition xl.

    s

    l

    xx

    xx

    os

    ol

    liquidofVol

    solidofVol

    Eutectic :At TeutecticA + B = L

    or + = L

    Temp

    compA B

    L

    L+S

    Sxs xl

    s o l

    x

    T

    TmA

    TmB

    Temp

    compA B

    L

    A+L

    A+B

    Teutectic

    B+L

    TmA TmB

    Eutectic with nosolid solubility

    Temp

    compA B

    L

    +L

    +

    Teutectic

    +L

    TmBTm

    A

    Eutectic withlimited solid

    solubility

    Gibbs Phase Rule :F + P = C + 2

    P no. of phasesC no. of componentsF degree of freedom

  • 7/30/2019 01.Introduction Integrated Circuit

    25/34

    bkdas

    25

    SegregationWhen a liquid having composition xlfreezes, the solid that first freezes has

    composition xs.

    This gives a purification onsolidification since xs < xl.

    Segregation coefficient = ko

    0citliminc

    ck l

    l

    so

    = ratio of slopes of solidus and

    liquidus at origin

    ko < 1 purificationko > 1 no purification

    Temp

    Comp(%B)

    L

    L+S

    S

    clcs

    liquidus

    solidus

    ks1

  • 7/30/2019 01.Introduction Integrated Circuit

    26/34

    bkdas

    26

    Solid SolubilitySolubility of B in A depend on the bond energies of A-A, B-B and A-B bondsand the entropy of the mixture of A and B atoms.

    )]x1ln()x1(xlnx[Tk)x1(zxNN

    ABBBBBBB

    BA

    where

    NA no. of A atoms & NB no. of B atomsxB = NB/ (NA + NB)9uhg

    = AB (AA + BB)/2AA, BB, AB are energies of A-A, B-B and A-B bonds respectivelyz = no. of nearest neighbours of A

    A = Helmholtz Free energy of forming solid solution of B in A = E - TS

    Slope ( A/ xB) near xB=0 is - . It is impossible to purify silicon to100%.

    We have to spend more and more

    energy to purify as material gets purer.Solubility limit

    xBA >0

  • 7/30/2019 01.Introduction Integrated Circuit

    27/34

    bkdas

    27

    TkEexpxx,1xIf

    ]Tk

    )x21(zexp[

    x1

    x

    0x1

    x

    lnTk)x21(z

    .itlimilitylubsogives0x

    ])NN/[A(

    B

    BoBB

    B

    B

    B

    B

    B

    B

    bB

    B

    BASolid Solubility

    This equation applies to solutes, vacancies, interstitials and allother thermal defects present in solids.

    exampleforerstitialsintforTk

    Eexpxx

    exampleforvacanciesforTk

    Eexpxx

    B

    IIoI

    B

    VVoV

  • 7/30/2019 01.Introduction Integrated Circuit

    28/34

    bkdas

    28

    nucliicriticalinmoleculesof.no)gg(3

    n2n

    nucliiofradiuscritical)gg(

    v2r

    0r8v

    )gg(r4gives0

    r

    G

    area/energysurfacewhere,n)v(36)gg(n

    )areasurface(G)volchemcial(Gr4

    v

    gr

    3

    4G

    ,growingis'r'radiusofnucleisphericalaSince

    )p

    pln(TkT)ss()TT)(ss()ss(Thhggg

    ioncondensat0G,TTAt

    ioncondensatno0G,TTAt

    3

    vlc

    vl

    l

    c

    cl

    vl2c

    r

    32

    3 2lvl

    sv2

    l

    lv3

    iBs

    vlv

    vlvlvlvllv

    v

    v

    c

    Homogeneous NucleationCondensation of Liquid from Vapour Phase:r

    rc r

    G

    Gc

    Gv ~r3

    Gs ~r2

  • 7/30/2019 01.Introduction Integrated Circuit

    29/34

    bkdas

    29

    2s

    3

    2c3

    2

    vl

    lc

    T

    K

    energysurfaceofrd3/13

    r4

    gg

    v

    3

    16G

    Homogeneous NucleationCondensation of Liquid from Vapour Phase:For r < rc, the nuclei will reduce in size.For r > rc, the nuclei will grow.

    An energy barrier of Gc has to be overcome for nucleation toproceed.

    rc

    where, Ts is the supersaturation, i.e., (Tv -T)

    2sB

    2

    o

    B

    co

    )T(TkKexpI

    TkGexpIInucleationofRate

    Rate of nucleation increases with supersaturation.

  • 7/30/2019 01.Introduction Integrated Circuit

    30/34

    bkdas

    30

    Homogeneous NucleationNucleation of Solid from Vapour : = f(orientation of the crystal plane) = anisotropic

    Singular surface, is minimum

    Non-singular surface consists

    of steps of singular surface

    2

    3s

    c

    s

    s

    32

    3 2svs

    ib

    vsc

    )T(

    )(KG

    area/energysurfaceaveragewheren)v(36)gg(nG

    ,growingismolecules'n'containingofnucleiaSince

    )p

    pln(TkggG

  • 7/30/2019 01.Introduction Integrated Circuit

    31/34

    bkdas

    31

    Homogeneous NucleationNucleation of Solid from Liquid :

    Tk

    g

    )T(T

    KKlnIln

    Tk

    )gG(expIIrateNucleation

    )T(

    1

    )gg(

    1G

    )ss(T)ss)(TT(

    )ss(T)ss(T)ss(Thhgg

    B

    #

    2

    21

    B

    #c

    o

    22lsc

    lslsm

    lslsm

    lslsls

    where g# = energy required to break bonds in liquid

    Below a temperature, nucleation rate reduces so that glassformation takes place at that point.

    Tm

    I

    glassformation

    T

  • 7/30/2019 01.Introduction Integrated Circuit

    32/34

    bkdas

    32

    Heterogeneous Nucleation

    4

    CosCos32

    gg

    v

    3

    16

    )gg(

    v)(27

    4

    G

    )(rv

    ggrG

    anglecontactwhere,Cos

    32

    vl

    l3lv

    2vll

    2l

    3

    lssvlslvlv

    c

    lssvlslvlv2

    l

    vl

    3l

    lvslsv

    Gc

    =0

    Gc decreases with smaller contact angle.

    Hence nucleation rate increases if there isheterogeneous nucleation.

    Nucleation is still easier inside a cavity.

    lv

    sv

    sl surface

    Condensation of Liquid on a Surface :

  • 7/30/2019 01.Introduction Integrated Circuit

    33/34

    bkdas

    33

    Nucleation will proceed by arrival ofmolecule on the surface and then itsmovement to the nucleating site bysurface diffusion.If surface diffusion is slow,nucleation rate, I, will become

    dependent on surface diffusion.

    Heterogeneous Nucleation

    Tk

    gGexp

    Tk3

    GANI

    B

    sdc

    B

    3c

    cs

    surface

    surfacediffusion

    I = Nucleation rate for heterogeneous nucleationgsd = activation energy for surface diffusion.

    Condensation of Liquid on a Surface :

  • 7/30/2019 01.Introduction Integrated Circuit

    34/34

    bkdas

    34

    Heterogeneous NucleationNucleation of a Solid inside Another Solid : Phase is growing inside phase.

    2

    3c

    gg

    v4G

    Cos2

    Cos

    Gc

    GcH

    0

    1 boundary

    edge

    cornerStrain :

    gs = strain energyIf g

    s

    is small, surface energydominates.

    If gs is large, nucleation takesplace to minimize the strain energy.

    bsn A)ggg(nG

    1

    y/RE(y/R)

    sphere

    needle

    platelet

    0

    R

    y