01 tension en

Upload: kenneth-tan

Post on 03-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 01 Tension En

    1/17

    Laboratory 1: Tensile testing

    Mechanical metallurgy laboratory 431303 1

    T. Udomphol

    LLaabboorraattoorryy 11

    Tensile Testing

    ____________________________________

    Objectives

    Students are required to understand the principle of a uniaxial tensile testing andgain their practices on operating the tensile testing machine.

    Students are able to explain load-extension and stress-strain relationships. To evaluate the values of ultimate tensile strength, yield strength, % elongation,

    fracture strain and Youngs Modulus of the selected metals when subjected to

    uniaxial tensile loading.

    Students can explain deformation and fracture characteristics of different materialssuch as aluminium, steels or brass when subjected to uniaxial tensile loading.

  • 7/28/2019 01 Tension En

    2/17

    Laboratory 1: Tensile testing

    Mechanical metallurgy laboratory 431303 2

    T. Udomphol

    1. Literature Review

    1.1 Stress and strain relationship

    Uniaxial tensile test is known as a basic engineering test to achieve ultimate strength, yield

    strength and ductility of interested materials. These important parameters are useful for the selection

    of engineering materials for any applications required. A standard specimen is prepared in a round or

    a square section along the gauge length as shown in figures 1 a) and b) respectively, depending on the

    standard used. Both ends of the specimens should have sufficient length and a surface condition such

    that they are firmly gripped during testing. The initial gauge length Lo

    is standardized (in several

    countries) and varies with the diameter (Do) or the cross-sectional area (A

    o) of the specimen as listed

    in table 1. This is because if the gauge length is too long, the % elongation might be underestimated

    in this case. Any heat treatments should be applied on to the specimen prior to machining to produce

    the final specimen readily for testing. This has been done to prevent surface oxide scales that might

    act as stress concentration which might subsequently affect the final tensile properties due to

    premature failure. There might be some exceptions, for examples, surface hardening or surface

    coating on the materials. These processes should be employed after specimen machining in order to

    obtain the tensile properties results which include the actual specimen surface conditions.

    Figure 1: Standard tensile specimens

    Type specimen United State (ASTM) Great Britain Germany

    Sheet )/( oo AL 4.5 5.65 11.3

    Rod )/( oo DL 4.0 5.0 10.0

    Table 1: Dimensional relationships of tensile specimens used in various countries.

  • 7/28/2019 01 Tension En

    3/17

    Laboratory 1: Tensile testing

    Mechanical metallurgy laboratory 431303 3

    T. Udomphol

    When a specimen is subjected to a tensile loading, the metal will undergo elastic and plastic

    deformation. Initially, the metal will elastically deform giving a linear relationship of load and

    extension. These two parameters are then used for the calculation of the engineering stress and

    engineering strain to give a relationship as illustrated in figure 2 using equations 1 and 2 as follow

    oA

    P= (1)

    oo

    of

    L

    L

    L

    LL =

    = (2)

    where is the engineering stress

    is the engineering strain

    P is the external tensile load

    Ao

    is the original cross-sectional area of the specimen

    Lo

    is the original length of the specimen

    Lf

    is the final length of the specimen

    During elastic deformation, the engineering stress-strain relationship follows the Hooks Law

    and the slope of the curve indicates the Youngs modulus (E)

    =E (3)

    If the tensile loading continues, yielding occurs at the beginning of plastic deformation. The

    yield stress, y, can be obtained by dividing the load at yielding (Py) by the original cross-sectional

    area of the specimen (Ao) as shown in equation 4.

    o

    y

    yA

    P= (4)

  • 7/28/2019 01 Tension En

    4/17

    Laboratory 1: Tensile testing

    Mechanical metallurgy laboratory 431303 4

    T. Udomphol

    Figure 2: Stress-strain relationship under uniaxial tensile loading

    The yield point can be observed directly from the load-extension curve of the BCC metals

    such as iron and steel or in polycrystalline titanium and molybdenum, and especially low carbon

    steels, see figure 3 a). The yield point elongation phenomenon shows the upper yield point followed

    by a sudden reduction in the stress or load till reaching the lower yield point. At the yield point

    elongation, the specimen continues to extend without a significant change in the stress level. Load

    increment is then followed with increasing strain. This yield point phenomenon is associated with a

    small amount of interstitial or substitutional atoms. This is for example in the case of low-carbon

    steels, which have small atoms of carbon and nitrogen present as impurities. When the dislocations

    are pinned by these solute atoms, the stress is raised in order to overcome the breakaway stress

    required for the pulling of dislocation line from the solute atoms. This dislocation pinning is related

    to the upper yield point as indicated in figure 3 a). If the dislocation line is free from the solute

    atoms, the stress required to move the dislocations then suddenly drops, which is associated with the

    lower yield point. Furthermore, it was found that the degree of the yield point effect is affected by the

    amounts of the solute atoms and is also influenced by the interaction energy between the solute atoms

    and the dislocations.

  • 7/28/2019 01 Tension En

    5/17

    Laboratory 1: Tensile testing

    Mechanical metallurgy laboratory 431303 5

    T. Udomphol

    Aluminium on the other hand having a FCC crystal structure does not show the definite yield

    point in comparison to those of the BCC structure materials, but shows a smooth engineering stress-

    strain curve. The yield strength therefore has to be calculated from the load at 0.2% strain divided by

    the original cross-sectional area as follows

    o

    yA

    P %2.0%2.0 = ...(5)

    Note: the yield strength values can also be obtained at 0.5 and 1.0% strain.

    The determination of the yield strength at 0.2% offset or 0.2% strain can be carried out by

    drawing a straight line parallel to the slope of the stress-strain curve in the linear section, having an

    intersection on the x-axis at a strain equal to 0.002 as illustrated in figure 3 b). An interception

    between the 0.2% offset line and the stress-strain curve represents the yield strength at 0.2% offset or

    0.2% strain.

    Figure 3: a) Comparative stress-strain relationships of low carbon steel and aluminium alloy and b)

    the determination of the yield strength at 0.2% offset.

  • 7/28/2019 01 Tension En

    6/17

    Laboratory 1: Tensile testing

    Mechanical metallurgy laboratory 431303 6

    T. Udomphol

    Beyond yielding, continuous loading leads to an increase in the stress required to

    permanently deform the specimen as shown in the engineering stress-strain curve. At this stage, the

    specimen is strain hardened or work hardened. The degree of strain hardening depends on the nature

    of the deformed materials, crystal structure and chemical composition, which affects the dislocation

    motion. FCC structure materials having a high number of operating slip systems can easily slip and

    create a high density of dislocations. Tangling of these dislocations requires higher stress to

    uniformly and plastically deform the specimen, therefore resulting in strain hardening.

    If the load is continuously applied, the stress-strain curve will reach the maximum point,

    which is the ultimate tensile strength (UTS, TS

    ). At this point, the specimen can withstand the

    highest stress before necking takes place. This can be observed by a local reduction in the cross-

    sectional area of the specimen generally observed in the centre of the gauge length as illustrated in

    figure 4. After necking, plastic deformation is not uniform and the stress decreases accordingly until

    fracture. The fracture strength (fracture

    ) can be calculated from the load at fracture divided by the

    original cross-sectional area,Ao, as expressed in equation 6.

    o

    fracture

    fracture

    A

    P= (6)

    Figure 4: Necking of a tensile specimen occurring prior to fracture

    Tensile ductility of the specimen can be represented as % elongation or % reduction in area

    as expressed in the equations given below

    100%

    =

    oL

    LElongation (7)

  • 7/28/2019 01 Tension En

    7/17

    Laboratory 1: Tensile testing

    Mechanical metallurgy laboratory 431303 7

    T. Udomphol

    100100%0

    =

    =A

    A

    A

    AARA

    o

    fo(8)

    where Af is the cross-sectional area of specimen at fracture.

    The fracture strain of the specimen can be obtained by drawing a straight line starting at the

    fracture point of the stress-strain curve parallel to the slope in the linear relation. The interception of

    the parallel line at the x axis indicates the fracture strain of the specimen being tested.

    1.2 Fracture characteristics of the tested specimens

    Metals with good ductility normally exhibit a so-called cup and cone fracture observed on

    either halves of a broken specimen as illustrated in figure 5. Necking starts when the stress-strain

    curve has passed the maximum point where plastic deformation is no longer uniform. Across the

    necking area within the specimen gauge length (normally located in the middle), microvoids are

    formed, enlarged and then merged to each other as the load is increased. This creates a crack having a

    plane perpendicular to the applied tensile stress. Just before the specimen breaks, the shear plane of

    approximately 45o

    to the tensile axis is formed along the peripheral of the specimen. This shear plane

    then joins with the former crack to generate the cup and cone fracture as demonstrated in figure 5.

    The rough or fibrous fracture surfaces appear in grey by naked eyes. Under SEM, copious amounts of

    microvoids are observed as depicted in figure 6. This type of fracture surface signifies high energy

    absorption during the fracture process due to large amount of plastic deformation taking place, also

    indicating good tensile ductility.

    For brittle metals or metals that failed at relatively low temperatures, the fracture surfaces

    usually appear bright and consist of flat areas of brittle facets when examined under SEM as

    illustrated in figure 7. In some cases, clusters of these brittle facets are visible when the grain size of

    the metal is sufficiently large. The energy absorption is quite small in this case which indicates

    relatively low tensile ductility due to limited amount of plastic deformation.

  • 7/28/2019 01 Tension En

    8/17

    Laboratory 1: Tensile testing

    Mechanical metallurgy laboratory 431303 8

    T. Udomphol

    Figure 5: Cup and cone fracture [3]

    Figure 6: Ductile fracture surface (Ductile metals) Figure 7: Brittle fracture surface (Brittle metals)

  • 7/28/2019 01 Tension En

    9/17

    Laboratory 1: Tensile testing

    Mechanical metallurgy laboratory 431303 9

    T. Udomphol

    2. Materials and equipment

    2.1 Tensile specimens

    2.2 Micrometer or vernia calipers

    2.3 Universal testing machine

    3. Experimental procedure

    3.1 The specimens provided are made of aluminium, steel and brass. Measure and record

    specimen dimensions (diameter and gauge length) in a table provided for the calculation of

    the engineering stress and engineering strain. Marking the location of the gauge length along

    the parallel length of each specimen for subsequent observation of necking and strain

    measurement.

    3.2 Fit the specimen on to the universal Testing Machine (UTM) and carry on testing. Record

    load and extension for the construction of stress-strain curve of each tested specimen.

    3.3 Calculate Youngs modulus, yield strength, ultimate tensile strength, fracture strain and %

    elongation of each specimen and record on the provided table.

    3.4 Analyze the fracture surfaces of broken specimens and sketch and describe the results

    3.5 Discuss the experimental results and give conclusions.

  • 7/28/2019 01 Tension En

    10/17

    Laboratory 1: Tensile testing

    Mechanical metallurgy laboratory 431303 10

    T. Udomphol

    4. Results

    Details Aluminium Steel Brass

    Diameter (mm)

    Width (mm)

    Thickness (mm)

    Cross-sectional area (mm2)

    Gauge length (mm)

    Youngs modulus (GPa)

    Load at yield point (N)

    Yield strength (MPa)

    Maximum load (N)

    Ultimate tensile strength (MPa)

    % Elongation

    Fracture strain

    Work hardening exponent (n)

    Fracture mode

    Fracture surfaces

    (Sketch)

    Table 2: Experimental data for tensile testing.

  • 7/28/2019 01 Tension En

    11/17

    Laboratory 1: Tensile testing

    Mechanical metallurgy laboratory 431303 11

    T. Udomphol

    Engineering stress-strain curve of aluminium

    Describe the engineering stress-strain curve

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

  • 7/28/2019 01 Tension En

    12/17

    Laboratory 1: Tensile testing

    Mechanical metallurgy laboratory 431303 12

    T. Udomphol

    Engineering stress-strain curve of steel

    Describe the engineering stress-strain curve

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

  • 7/28/2019 01 Tension En

    13/17

    Laboratory 1: Tensile testing

    Mechanical metallurgy laboratory 431303 13

    T. Udomphol

    Engineering stress-strain curve of brass

    Describe the engineering stress-strain curve

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

  • 7/28/2019 01 Tension En

    14/17

    Laboratory 1: Tensile testing

    Mechanical metallurgy laboratory 431303 14

    T. Udomphol

    5. Discussion

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

  • 7/28/2019 01 Tension En

    15/17

    Laboratory 1: Tensile testing

    Mechanical metallurgy laboratory 431303 15

    T. Udomphol

    6. Conclusions

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

  • 7/28/2019 01 Tension En

    16/17

    Laboratory 1: Tensile testing

    Mechanical metallurgy laboratory 431303 16

    T. Udomphol

    7. Questions

    7.1 What is work hardening exponent (n)? How is this value related to the ability of metal to be

    mechanically formed?

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    7.2 If the tensile specimen is not cylindrical rod shaped but a flat rectangular plate, how do you

    expect necking to occur in this type of specimen?

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    ____________________________________________________________________________________________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

  • 7/28/2019 01 Tension En

    17/17

    Laboratory 1: Tensile testing

    M h i l t ll l b t 431303 17

    7.3 Both yield strength and ultimate tensile strength exhibit the ability of a material to withstand

    a certain level of load. Which parameter do you prefer to use as a design parameter for a

    proper selection of materials for structural applications? Explain

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    8. References

    8.1 Hashemi, S. Foundations of materials science and engineering, 2006, 4th

    edition, McGraw-

    Hill, ISBN 007-125690-3.

    8.2 Dieter, G.E.,Mechanical metallurgy, 1988, SI metric edition, McGraw-Hill, ISBN 0-07-

    100406-8.

    8.3 W.D. Callister, Fundamental of materials science and engineering/an interactive e. text,

    2001, John Willey & Sons, Inc., New York, ISBN 0-471-39551-x.