0+1+)-' functional materials by design for solar energ

73
Functional Materials by Design for Solar Energy Conversion Bill Tumas Associate Lab Director Materials and Chemical Science and Technology National Renewable Energy Laboratory February 19, 2014 [email protected] !""#$%&#" (#) *+) ,"-)./ 0+1+)-

Upload: others

Post on 02-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Functional Materials by Design for Solar Energy Conversion

Bill Tumas

Associate Lab Director Materials and Chemical Science and Technology

National Renewable Energy Laboratory February 19, 2014

[email protected]

!""#$%&#"'(#)'*+)',"-)./'0+1+)-'

Director W. Tumas (NREL) Theory A. Zunger, Chief Scientist-Theory (CU)

S. Lany, P. Graf (NREL); V. Stevanovic (CSM) L. Yu, X. Zhang (CU), A.J. Freeman, G.Trimarchi (Northwestern)

Inorganic D.G. Ginley, Chief Scientist-Experiment (NREL) Synthesis J.D. Perkins, A Zakutayev, P. Ndione (NREL) & Characterization D.A. Keszler and J.F. Wager (Oregon State University);

K.R. Poeppelmeier and T.O. Mason (Northwestern University); M.Toney (SLAC)

Program Integrator L. Kazmerski, John Perkins

Acknowledgement: Center for Inverse Design EFRC

!"

Global Energy Challenge: Sustainable Materials, Processes and Systems

Cost ($/W) Performance

Reliability

Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs – UN Bruntland Commission

-! Greenhouse Gases -! Land Use -! Water Use -! Resources -! Hazards -! Waste

Integration at Scale

From Horse Power to Horsepower: The Great Horse-Manure Crisis of the 1890s

Shift Happens - Eric Morris, UC Davis

Solar Energy Generation AND

Storage/Use of Solar Energy

Materials ! Processes/Components ! Devices ! Systems

Thermal (heat)

Electrical (storage)

Fuels (chemical)

Solar (light)

Key Solar R&D Needs Addressed at NREL •! Applied R&D

•! Costs and efficiency, performance •! Understanding and control defects and interfaces •! Processing

•! Reliability -! Testing -! Prediction, Mechanisms of degradation

•! Manufacturing •! Next Generation

-! New absorbers/contacts -! Advanced processing -! New architectures, substrates, balance of system

•! Fundamental Research -! New materials by design -! Efficiency beyond the Shockley-Queisser limit -! Advanced manufacturing

Cost ($/W) Performance

Reliability

Gap between Cell and Module Efficiencies

Target Functionalities – Solar Energy Conversion

Solar Absorber Materials -! Strong solar absorption

Eg, absorptivity, SLME -! Carrier Lifetimes -! Carrier Diffusion recombination centers/defect -! Doping -! Low cost, non-toxic Transparent Conductors (n, p) - Transparency (band-structure) optical band gap > 3 eV - Conductivity (defects)

- Minimize hole-killer defects dopability, avoid formation of O-vacancies

- Maximize hole-producing defects intrinsic: vacancies, anti-sites, ... extrinsic: impurity doping

- Enhance hole mobility

• Semiconductor “high-tech” is based on just a handful of basic species: Si, Ge, GaAs, …

• These provide but a limited and sparse scale of band gaps:

Very ,Very few ….

0 1 2 3

InSb Ge Si InP GaAs AlAs eV

Some Observations

DOE Basic Research Needs Workshop report noted Missing Materials:

“ ! the range of materials currently available for use in photovoltaics is highly limited compared to the enormous number of semiconductor materials that can in principle be synthesized “ .

EERE invested in incremental refinement of the “usual-suspect materials” ( Si, CdTe, CIS !) Most involved accidental discoveries.

Need broad base of materials with optimized tailored properties not just few materials

11

Traditional approach: “Given a material, what are the properties” Inverse design: “Given a desired property, what is the material”

“Inverse Design”: Declare first the functionality you need, then use theory-guided experiment to iteratively find the material that has this target functionality

Center for Inverse Design

Center for Inverse Design

* tight coupling of theory and experiment * iterative attempts at a problem, teaching each other; * synergism between theory, synthesis and characterization

Center for Inverse Design!

Properties of interest •! Thermodynamic stability- !Hf •! Band structure and optical properties •! Defects and doping •! Carrier transport mechanism (band vs. small-polaron) •! !

Electronic structure methods •! Density functional theory

self-consistent charge density, total-energy •! Many body interactions in GW approximation

Quasi-particle energies, optical properties •! Credit to VASP group

Theory Tools

Tools for Inverse Design Tools for Inverse Design

!"#$%&$'()#$*)&+,(-."/0&('"01+23*2'"-2/&01+0**'(0,$+

#$%&$'" 23"(&%)$"

3"

2"

*+",-.",-.,-.

3

./01"2034"5$67(0871"" 9/:(0;%3"6'76$'&:"4%6601)""

."

<=>?="

."

<=>?="

<'@"#!A")%("A"%&74"(7B';$"

5%&%"%1%3:(0("%1C"D0(B%30E%871"

F2"(6BG$'01)@"9H5"?01%':>4$&%3"&%')$&("<'>#!A@"<'@"+@",")%(($("A@"+"%&74"(7B';$("!I!J"(%463$"30K'%'0$("

L7467(0871"M=F2@456N"A&'B;&B'$"M=F5@"4%7%"N".'%1(67'&MO66@"A$$K$;PN",68;%3"MBDQ0'@89:"AB'R%;$"MS9@"286;<86N"T0;'7(;76:"MAUT='>0?:'

*)7'"9F,"(7VW%'$"R'%4$W7'P"LB(&74QW'0G$1"6%;P%)$"7R"RB1;871("-($'Q%((0(&$C"%1%3:(0("@%1%'7A"A".;%"%B/CAC'

4$"/+51-+,(-."+0**'(0,$+,0/+6(+708&+8,'22/"/#+.27('2+.)19+8:/&$28"8+

>D6'D#7EF'6GAF='HI='JKL'MNOHH:'PF'>QQBF'8R/CF''HHI='NIHHOH'MNOHI:S'T##U')-$A-VCW'

Two Main Approaches for Inverse Design

Design by Design Principles -  Many material systems with

known structure and composition (e.g. ICSD)

-  Functionality unknown -  Complex target properties,

e.g. PV absorptivity, efficiency, transparent conductivity

-  Search via design principles for targeted functionalities

Missing Materials -  Many material systems, but

structure unknown -  Many (~ 50–100) possible

configurations, requiring energy minimization and stability analysis

-  Target properties: first existence, then other properties

 

Inverse Design of Solar Absorbers Design Principle for high absorption

Validate properties for “best of class” Theory, synthesis, and characterization

Theory screening of many candidate materials for band gap and absorption

Materials Screening

Desired: Very high ab-sorption for cell design with very thin absorber Needed: High joint density of states

Implementing Inverse Design: Solar Absorbers

17

Inorganic Crystal Structure Database: ICSD

> 166,000 crystal structures; updated semi-annually http://www.fiz-karlsruhe.com/icsd.html

Selec<on  Criteria:  Spectroscopically  Limited  Maximum  Efficiency-­‐-­‐SLME  

•  Detailed  balance  between  cell  inside  and  outside  

•  Photon  energy  dependent  absorp8on  

•   Op8cal  band  gap  type  factor  f(r)  –  non-­‐radia8ve  recombina8on  

 

Captures physics of absorption, emission and recombination optical type, gaps and material-dependent non-radiative recombination loss

Yu, Zunger Phys Rev Lett 108, 068701 (2012)

Absorption Screening •  High Throughput screening:

–  First-principles quasi-particle GW method (G0W0+HSE06)

–  Provides good band gap estimation

•  Input: –  ICSD structure –  No element or stoichiometry

restrictions

•  Output: –  Band gap type –  Absorption spectra –  Electronic structure

20

High SLME materials include known absorbers

Yu, Zunger Phys Rev Lett 108, 068701 (2012)

Other experimentally confirmed PV absorbers (less studied)

Yu, Zunger Phys Rev Lett 108, 068701 (2012)

Previously unrecognized high SLME materials

Yu, Zunger Phys Rev Lett 108, 068701 (2012)

In Cu-III-VI system: Cu3Tl1+Se2 has stronger absorption than CuTl3+Se2

In Cu3Tl1+Se2: -('2+41+*+"/+=CD+-('2+41+8+"/+EC+

Yu, Zunger Phys Rev Lett 108, 068701 (2012)

F$0&+,(/&'(18+&$2+8&'2/#&$+(7+(*<,01+0.8('*<(/G+

26 "! Increase p DOS near CBM and s DOS near VBM

4$2+6"'2,&+&'0/8"<(/+'0&2+HI2'-"J8+K(162/+'(12L>+

GaAs, CdTe

VB

CB

anion p

cation s

DOS

cation s VI s M p

Cu-M-VI

VI s

DOS

M p

VI p + Cu d M s

VI s VI s VI s M p M p

CuInSe2 (CIS)

Se p + Cu d

In s + Se s

In p In p

DOS

+ Cu d

In s + Se s

Se p +

In s + Se s

weak

Liping Yu

Cu-III-VI ! Cu-V-VI

=)%MMMH8N*OL%EM+ =)%EH8N*PL%EM+

<3"MXYN" 9"MZY@"XYN"

[%"MXYN" <("MZY@"XYN"

*1"MXYN" AK"MZY@"XYN"

.3"MXY@\YN" ?0"MZY@"XYN"

Low valence compound: Cu-V(3+)-VI High valence compound: Cu-V(5+)-VI

27

Case of Cu-Sb-S: Cu-Sb3+-S vs. Cu-Sb5+-S vs. CuInSe2 (CIS)

?7&/"LBXAKAX"%1C"LBAKA!"/%D$"(&'71)$'"%K(7'6871"&/%1"LBXAKAO"%1C"L*A"R7'"/]"^"U)Y_`"

_"C$6$1C("71"&/$"$1$'):"C0a$'$1;$"K$&W$$1"01C0'$;&")%6"%1C"C0'$;&")%6"LBAKA!"b""c`cZ"MU)U'd"U)A'N"""""LBXAKAXb"c`\X"MU)U'd"U)A'N"

3+='9F='-1'%BF'='!"#$%&'()*+%,-.()$%/0%1/%2345/6'

e<A9b""[cfcg#AUch"

Experiment shows same absorption trend in Cu-Sb-S case

By R. S Kokenyesi and D. A Keszler, Oregon State University

3+='9F='-1'%BF'='!"#$%&'()*+%,-.()$%/0%1/%2345/6'

More V p in Cu-V3+-VI compounds near CBM

VBM

CBM

CBM+2eV

VBM-2eV

CBM+2eV

VBM VBM

V p DOS

Ene

rgy

(eV

)

VBM-2eV VBM-2eV VBM-2eV

DOS

CBM

Integrated V p DOS near VBM

Inte

grat

ed V

p D

OS

near

CB

M

30

More V s in Cu-V3+-VI compounds near VBM

VBM

CBM

CBM+2eV

VBM-2eV

CBM+2eV

VBM VBM

V s DOS

Ene

rgy

(eV

)

VBM-2eV VBM-2eV VBM-2eV

DOS

CBM

Integrated V s DOS near VBM

Inte

grat

ed V

s D

OS

near

CB

M

31

Step 3: Experimental Realization

Low temperature synthesis Polycrystalline absorbers with rapid onset of absorption

(">105 cm-1 at EG+0.5 eV) Keszler et al. Oregon State

substrate Sb2S3

Cu

Sb2S3

substrate

polycrystalline Cu-V-VI

+S, 300°C

A;0$18i;"%66'7%;/"7R"&/$"jQ0*"6+R2S21(*-2/&J"6'7k$;&"

A3*1('0<(/" Q2820',$+ R2S21(*-2/&+

57W1Q($3$;871"R'74"4%1:"67((0K0308$(" R2S",28+@0&2'"018+

A3*1('0<(/ Q2820',$+ R2S21(*-2/&+R2S21(*-2/&+R2S21(*-2/&+R2S21(*-2/&+R2S21(*-2/&+

57W1Q($3$;871"R'74"4%1:"67((0K0308$(" R2S",28+@0&2'"018+ 57W1Q($3$;871"R'74"4%1:"67((0K0308$("

A&%&$"7R"&/$"%'&"'$($%';/"4$&/7C("2'74"4%&$'0%3("&7"C$D0;$("MX"(&$6(N"9'$C0;8D$"&/$7'$8;%3";%3;B3%871("#0)/Q&/'7B)/6B&";74K01%&7'0%3"$I6$'04$1&(""?'7%C"(;76$"7R"9e"4%&$'0%3(".$(&Q;%($(b"LBQA1QA"%1C"LBQAKQA"%K(7'K$'("+$I&Q)$1$'%871b"7I0C$QK%($C"%K(7'K$'("?'7%C3:"%6630;%K3$"&7"W0C$"'%1)$"7R"4%&$'0%3(""

Exploration of Cu-Sn-S family of materials

•! LBOA1AO"Q"&77"4%1:"/73$("M,/"LBN"•! LBOA1lA\h"Q"2$'40"3$D$3"MEFN"601101)"•! LB!A1AX"Q"R$W"/73$(@"17"U2"601101)"

=)N;/;P+"8+0+-('2+*'(-"8"/#+TE+0.8('.2'8+&$0/+(&$2'+=)%;/%;+-0&2'"018+

=)%;/%;+&$2('2<,01+*'26",<(/+

U+=)%;/%;+-0&2'"018+

Cu-Sn-S experimental realization

=)N;/;P+-0&2'"01+

=)%*(('+#'(V&$+

Zakutayev et al. Appl Phys Lett 103, 253902 (2013)'

Designing p-Type Ternary Oxides

Implementing Inverse Design

DEVELOP p-type TCO design principles

SEARCH A2BO4 w.r.t. design principles

IMPROVE Co2ZnO4 based

on design principles

Modality 2 = Inverse Design By Design Principles

78*9%9:;(%<:'<('.)-=:'%2"(>(<.%<-;<$6%%

"""

78*9%9:;(%?:@8;8.+%2A:;-):'%<-;<$6%%

"

"

B)-'CA-)('<+%2@-'"DC.)E<.E)(%<-;<$6%

" ""

•!"<18QK71C01)"D%3$1;$"K%1C"4%I04B4"

•!"+7"K7B1C"673%'71("

•!"<K($1;$"7R"/73$QP033$'"C$R$;&"

•!"9'$($1;$"7R"/73$Q6'7CB;01)"C$R$;&("

•!",68;%3"K%1C")%6"^"X"$e"•!"f0C$"30)%1C"i$3C"(630m1)"M(74$";%($(N"

T%4=W+TQWTAQ4MA;+ RA;MKX+TQMX=MT?A;+

Chose Search Space: A2BO4 Spinels – 40 in ICSD

Normal 3-2 Spinels: A+3 Oh site (e.g., Al, Fe, Co) B+2 Td site (e.g., Mg, Zn, Fe)

Yellow: Tetrahedral (Td)

Blue: Octahedral (Oh)

•"H%')$"R%403:"7R";7467B1C(""•!"f0C$"'%1)$"7R"6/:(0;%3"%1C";/$40;%3"6'76$'8$(n"37W"7I:)$1"D%;%1;:"

Selection of Ternary A2BO4 Compounds A broad class for materials discovery

Inverse 3-2 Spinels: A+3 Oh, Td sites (e.g., Fe, Co) B+2 Oh site (e.g., Ni)

R(*"/#+Y+&:*28+

A3+ on Td is DONOR B2+ on Oh is ACCEPTOR

Paudel et al. Adv. Func. Matl 21, 4493 (2011) Perkins et al. Phys Rev B, 84, 205207 (2011)

Anti-site defects control properties:

DT-2--No Intrinsic Hole Killer !!

Co2(Zn,Ni)O4 – best of class!

Role of Anti-Site Defects in Spinels <K030&:"&7";%3;B3%&$"C$R$;&("%1C"C76%1&("0(";'08;%3"&7"$3$;&'710;"4%&$'0%3("C$(0)1"M(B6$';$33"%66'7%;/N"

12 of 40 A2BO4 Spinels Type 2 (Naturally P-Type)

VB

CB

Paudel et al, Advanced Functional Materials, 21, 01469 (2011)

Acceptor

Donor

Low Cost + Non-Toxic ! Take Co2ZnO4 as Prototype

Sputtered Co2ZnO4 Can Be Zn-Rich

Non-Equilibrium Theory - Excess Zn ! Oh Site - AXRD Confirms

Sputtered Films (TS = 340°C) - Zn-Rich Spinel Phase - Conductivity Increases

Annealed Films - Conductivity Decreases - Reduced Antisite Defects?

Perkins et al, Phys. Rev. B, 84, 205207 (2011)

Predicted Extrinsic Dopability

• 17 Dopants Evaluated by Theory

• Li, Ni, Mg best • Equilibrium Solubility

Limit ~ 5%

Perkins et al, Phys. Rev. B, 84, 205207 (2011)

As shown in Fig. 1(a), the Zn–Ni–Co–O spinel thin filmsappear to have no other crystalline phases over a broad portionat the high-Co region of the ZnO–NiO–Co3O4 compositionrange; however, at low-Co regions rocksalt (NiO) and wurtzite(ZnO) phases are present. The color scale in Fig. 1(a) indicatesthe ratio of the sum of XRD intensities of ZnO (002) and NiO(111) peaks to the intensity of the spinel (311) peak. The com-positional range of stability for the spinel phase is broader (i.e.,the minimum amount of Co is lower) for Co3O4 co-doped withZn and Ni (Zn–Ni–Co–O) compared with Co3O4 doped withonly Zn (Zn–Co–O) or only Ni (Ni–Co–O). Within thespinel-only region, the XRD measurements cannot distinguishbetween a single-phase spinel solid solution and a multi-phasemixture of phase-separated spinels, because of the close matchof the lattice parameter of Co2ZnO4 (0.810 nm)[8] and Co2NiO4

(0.811 nm).[9] The stability range of the Zn–Ni–Co–O spinel

remains mostly unaffected by the 500 °C air anneal: onlyZn-rich films (<20 at.% Ni) show a 5–10 at.% decrease of thecomposition range of stability.

As shown in Fig. 1(b), co-doping of Co3O4 with Zn and Nidecreases the strength of the sub-gap absorption band at 689nm (1.8 eV), which is a relevant part of the spectrum for PVapplications. We attribute the sub-gap absorption α to opticaltransition between the Co atoms in tetrahedral (Td) and octa-hedral (Oh) coordination, because the absorption disappearsabove 33 at.% of Zn in Zn–Co–O (Co2ZnO4), at which Znatoms fill all available Td sites (1/3 of total cation sites), andabove 67 at.% of Ni in Ni–Co–O (CoNi2O4), at which Niatoms fill all available Oh sites (2/3 of total cation sites). Theabsence of absorption below the tie-line that connectsCo2ZnO4 and CoNi2O4 [dash-dotted line in Fig. 1(b)] suggeststhat the Zn–Ni–Co–O thin films are a mixture of Zn–Co–O

Figure 1. (Color online) (a) Crystalline phase purity and (b) optical absorption maps of Zn–Ni–Co–O thin films. The dashed and dash-dotted lines indicateCo2ZnO4–Co2NiO4 and Co2ZnO4–CoNi2O4 tie-lines, respectively. The dotted line indicates a phase boundary with NiO and ZnO. Symbols outlined by black lines in(a) show 44 points from one combinatorial library.

Figure 2. (Color online) (a) Conductivity σ of Zn–Ni–Co–O thin films. The dashed and dash-dotted lines indicate Co2ZnO4–Co2NiO4 and Co2ZnO4–CoNi2O4tie-lines, respectively. The dotted line indicates a phase boundary with NiO and ZnO impurity phases. (b) J–V curves and their parameters for PCDTBT:PCBMbulk heterojunction organic photovoltaic devices with amorphous hole transport layers with Zn1.65Co1.35O4 composition. The dashed line indicates a J–V curvemeasured in the dark.

2▪ MRS COMMUNICATIONS • www.mrs.org/mrc

As shown in Fig. 1(a), the Zn–Ni–Co–O spinel thin filmsappear to have no other crystalline phases over a broad portionat the high-Co region of the ZnO–NiO–Co3O4 compositionrange; however, at low-Co regions rocksalt (NiO) and wurtzite(ZnO) phases are present. The color scale in Fig. 1(a) indicatesthe ratio of the sum of XRD intensities of ZnO (002) and NiO(111) peaks to the intensity of the spinel (311) peak. The com-positional range of stability for the spinel phase is broader (i.e.,the minimum amount of Co is lower) for Co3O4 co-doped withZn and Ni (Zn–Ni–Co–O) compared with Co3O4 doped withonly Zn (Zn–Co–O) or only Ni (Ni–Co–O). Within thespinel-only region, the XRD measurements cannot distinguishbetween a single-phase spinel solid solution and a multi-phasemixture of phase-separated spinels, because of the close matchof the lattice parameter of Co2ZnO4 (0.810 nm)[8] and Co2NiO4

(0.811 nm).[9] The stability range of the Zn–Ni–Co–O spinel

remains mostly unaffected by the 500 °C air anneal: onlyZn-rich films (<20 at.% Ni) show a 5–10 at.% decrease of thecomposition range of stability.

As shown in Fig. 1(b), co-doping of Co3O4 with Zn and Nidecreases the strength of the sub-gap absorption band at 689nm (1.8 eV), which is a relevant part of the spectrum for PVapplications. We attribute the sub-gap absorption α to opticaltransition between the Co atoms in tetrahedral (Td) and octa-hedral (Oh) coordination, because the absorption disappearsabove 33 at.% of Zn in Zn–Co–O (Co2ZnO4), at which Znatoms fill all available Td sites (1/3 of total cation sites), andabove 67 at.% of Ni in Ni–Co–O (CoNi2O4), at which Niatoms fill all available Oh sites (2/3 of total cation sites). Theabsence of absorption below the tie-line that connectsCo2ZnO4 and CoNi2O4 [dash-dotted line in Fig. 1(b)] suggeststhat the Zn–Ni–Co–O thin films are a mixture of Zn–Co–O

Figure 1. (Color online) (a) Crystalline phase purity and (b) optical absorption maps of Zn–Ni–Co–O thin films. The dashed and dash-dotted lines indicateCo2ZnO4–Co2NiO4 and Co2ZnO4–CoNi2O4 tie-lines, respectively. The dotted line indicates a phase boundary with NiO and ZnO. Symbols outlined by black lines in(a) show 44 points from one combinatorial library.

Figure 2. (Color online) (a) Conductivity σ of Zn–Ni–Co–O thin films. The dashed and dash-dotted lines indicate Co2ZnO4–Co2NiO4 and Co2ZnO4–CoNi2O4tie-lines, respectively. The dotted line indicates a phase boundary with NiO and ZnO impurity phases. (b) J–V curves and their parameters for PCDTBT:PCBMbulk heterojunction organic photovoltaic devices with amorphous hole transport layers with Zn1.65Co1.35O4 composition. The dashed line indicates a J–V curvemeasured in the dark.

2▪ MRS COMMUNICATIONS • www.mrs.org/mrc

,68;%3"0/6"U3$;&'0;%3"6'76$'8$("%'$"76840E$C""01"%"/(/%&'"S"01+;7467(0871"'$)071"

Optical and Electrical: Region of Interest

TS = 350 °C TS = 350 °C

Three ways to improve conductivity in Co spinels

NZ+(/+W$+8"&2+*'(6),28+$(128 + +/(+$(12+9"112'8[+

\3+"-*'(S2-2/&+

1. Non-equilibrium growth

N]3+"-*'(S2-2/&+

2. Extrinsic dopants

O]]]]3+"-*'(S2-2/&+

3. Induce inverse spinel phase

@03"-"^2+&$"8+&(+"/,'2082+,(/6),<S"&:+

•!+X2V+-0&2'"018+0'2+1"921:+&(+$0S2+/2V+*'(*2'<28+

•!T'(*2'<28+$0S2+*'2S"()81:+.22/+23&'0,&26+"/+1"&2'0&)'2+7'(-+0/+"/,(-*12&2+82&+(7+-0&2'"018+H2_#_+M=;RL+

•!@0/:+$0S2+,01,)10&26+*'(*2'<28+7('+)/9/(V/+,(-*()/68+H2_#_+`Ca+$017%!2)812'+,(-*()/68L+.)&+$0S2/J&+62&2'-"/26+&$2"'+8&0."1"&:+H"_2_+23"8&2/,2L+

+•!=0/6"60&2+-0&2'"018+7('+011(:"/#+

@"88"/#+@0&2'"018+

=$0112/#2+O>+;&'),&)'2+(7+0/+)/9/(V/+,(-*()/6+

K2/2'01+8(1)<(/>++

TB#E%B'6Q%G-'T)#+Q'*Q&7AY%&#"'MT6T*:'

`1&2'/0<S2>+•! Pb"(&'B;&B'$(Q&:6$("R7'"occ"P17W1"<!?=O"•! "[[<Y-"&7"(7'&"7B&"&/$")'7B1CQ(&%&$"(&'B;&B'$"

X(_+ X0-2++H230-*12L+ ;*0,2+K'()*+

W,,)''2/,2++

\`" A601$3"M<3!T),ON" 2CX4" !ZZ"

!`" ++"M./X9ON" *OXC" ol"

X`" ,30D01$"M<3!?$,ON" 914%" Oo"

O`" #%B(4%10&$"MT1X,ON" *O>%4C" !l"

Z`" 9/$1%P0&$"MH0!f,ON" FX" \O"

p``"

;(cV0'2+62S21(*-2/&>+

\N"A$m1)"B6"%B&74%8;%33:"&/$";':(&%3301$"%1C"4%)1$8;"(&'B;&B'$"R7'"$%;/"67&$18%3")'7B1C"(&%&$"

!N"<B&74%8;"C$&$;871"7R"$''7'(""

XN"<B&74%8;"$I&'%;871"7R"6'76$'8$("

!"#$+%+4$'()#$*)&+,01,)10<(/8+

;,(*2>+•! Och"<!?=O"•! Xq"(&'B;&B'$Q&:6$("R7'"$%;/"<!?=O"•! A$D$'%3"4%)1$8;";71i)B'%871("

de]+]]]+KK`Zf+;%3;B3%871("dO]g+=Tf$+B(01)"

Q26+@280+!T="

=$0112/#2+N>+;&0."1"&:+V"&$+'28*2,&+&(+,(-*2</#+*$0828+

_#RM<4?1=3N"r"U&7&M<4?1=3N""""d"""""M4sc<"Y"1sc?"Y"3sc=N"

.7&%3"$1$'):" U3$4$1&%3"'$R$'$1;$""$1$')0$("

!"<"Y"?"Y"O"="

`"`"`"

<!?=O" `"`"`"_#R"

<!=X"Y"?="

<?=X"Y"t"<!="Y"t"="

•! Fitted Elemental-phase Reference Energies (FERE) + GGA+U •! 50 µ0-values fit to 252 binary compounds with measured "Hf

=(''2,</#+RI4+7('+0,,)'0&2+h!7+Y+IAQA+

I"i26+A12-2/&01+Q272'2/,2+A/2'#"28+Y+IAQA++

Sn +0.18

Ge +0.15

Ga +0.66

Cd +0.35

Ca +0.29

Na +0.17

O +0.23

S +0.06

Se -0.07

Te -0.11

F +0.15

Cl +0.16

N -0.20

P -0.68

As -0.41

Sb -0.16

Bi -0.33

Si +0.43

Al +0.72

In +0.41

Zn +0.43

Hg +0.17

Cu +0.05

Ag -0.12

Ni +0.08

Co -0.10

Fe -0.15

Mn -0.03

Cr +0.07

V -0.45

Ti +0.05

Sc +0.49

Be +0.35

Mg

+0.55

Sr +0.51

Ba +0.54

Li +0.21

K +0.28

Rb +0.29

Au -1.26

Pd -0.27

Pt -0.43

Rh -0.53

Ir -0.19

La +0.20

Zr +0.72

Hf +0.72

Y +0.66

Nb +0.36

Ta +0.40

µ0 (FERE) = µ0 (GGA+U) + #µ0 (FERE)

cations anions

U=3 eV U=5 eV

Cu +0.05

Ag -0.12

Au

Zc"uc"D%3B$("iG$C"B(01)"4$%(B'$C"_#R"D%3B$("7R"!Z!"K01%':"610;8C$(@";/%3;7)$10C$("%1C"/%30C$("

V. Stevanovic, S. Lany, X. Zhang, and A. Zunger, Phys. Rev. B 85, 115104 (2012)

IAQA+E01"60<(/+%+42'/0'"28++

55 ternary compounds with measured "Hf

V. Stevanovic, S. Lany, X. Zhang, and A. Zunger, Phys. Rev. B 85, 115104 (2012)

A30-*12>+@/N;"Wj+

Theory: Structure: Olivine "Hf = -2.53 eV/atom

Experiment: Structure: Olivine "Hf = -2.56 eV/atom

How it Works: Mn2SiO4

Theory: Structure: Olivine "Hf = -2.53 eV/atom

Experiment: Structure: Olivine "Hf = -2.56 eV/atom

Example: Mn2SiO4

Theory: Structure: Olivine "Hf = -2.53 eV/atom

Experiment: Structure: Olivine "Hf = -2.56 eV/atom

Example: Mn2SiO4

-4.18 eV < "$O < -3.16 eV

Finch et al. J. Cryst. Growth, 29, 269 (1975)

T = 1600 K, pO2 = 10-10 atm

% "$O = -3.45 eV

Theory: Structure: Olivine "Hf = -2.53 eV/atom

Experiment: Structure: Olivine "Hf = -2.56 eV/atom

Example: Mn2SiO4, growth conditions

Theory: Structure: Olivine "Hf = -2.53 eV/atom

Experiment: Structure: Olivine "Hf = -2.56 eV/atom

Growth: T = 1600 K

pO2 = 10-10 atm

experiment

Mn : Si = 2 : 1

High-throughput Discovery of New A2BX4 Compounds

(A,B)

X

Rules: (1) only one transition metal at a time (2) respect possible oxidation states

Total 656 possible combinations 250 are reported 406 are not reported (“missing compounds”)

Predicted New A2BO4

Out of 63 missing oxides 46 not stable

17 stable

Newly predicted: Hg2SiO4 In2HgO4 Ti2BeO4 Ti2SrO4 Ti2BaO4 Ti2ZnO4 V2BeO4 V2SiO4

7 already predicted by Hautier et al., Chem. Mater., 2010

OXIDES

A2BX4 search: ~80000 individual total-energy calculations (incl. structures and magnetic configurations)

Results – Sulfides

We predict: Hg2GeS4, Al2TiS4, Al2VS4, Al2CoS4, Al2NiS4, In2VS4, Sc2BaS4, Ti2MgS4,!

Out of 92 not reported 34 stable,

1 undermined 57 not stable

Be"Mg"Ca"Sr"Ba"Zn"Cd"Hg"Al"Ga"In"Sn"Sc"Ti"V"Cr"Mn"Fe"Co"Ni"Cu"

Be"Mg"Ca"Sr"Ba"Zn"Cd"Hg"Si"Ge"Sn"Ti" V" Cr"Mn"Fe"Co"Ni"Cu"

CID Predicted Ternary Materials

!3FG1%?-.()8-;C%?-8'%*):EA%-'"%/"%(;(?('.CH%%IE.%:>%JK1%#-)8-=:'C0%13L%-)(%E')(A:).("%

544%A)("8<.("%C.-@;(0%55%E'"(.()?8'("0%-'"%/5K%A)("8<.("%':.%C.-@;(%

!FG%?-.()8-;C%M8.9%K%(;(<.):'CH%IE.%:>%N51%#-)8-=:'C0%1KK%-)(%E')(A:).("%

3/O%A)("8<.("%C.-@;(0%5K%E'"(.()?8'("0%-'"%3/O%A)("8<.("%':.%C.-@;(%%%

X. Zhang, V. Stevanovic, M. d'Avezac, S. Lany, and A. Zunger, Phys. Rev. B, 86, 014109 (2012)

X. Zhang et al., Adv. Funct. Mater. 22, 1425–1435 (2013).

30 compounds F-43m

15 compounds Pnma

6 compounds P21/c

2 compounds P63/mmc

2 compounds R-3m

1 compound P-3m1

1 compound P42/mmc 1 compound

Imm2

Identification of ABX ternary materials

a%'0:+6"k'0,<(/+"8+)8)011:+&$2+*'21"-"/0':+&((1+&(+"62/<7:+0+/2V+-0&2'"01_++`++708&+"62/<5,0<(/+(7+&$2+/2V+`Ca+,(-*()/68+"/+-)1<*$08",+80-*128+"8+*(88".12+.:+8"-)10</#+&$2+*0i2'/+(7+&$2+*'26",&26+8&'),&)'2_+

58 Stable and NOT reported ABX

18 electron compounds

The symmetry of a predicted stable

compound makes possible:

1) Simulation of diffraction pattern

2) Fast identification in the experimental

pattern

Fast identification in multiphasic sample

(110) zone

Simulation Experiment F-43m

Predicted crystal structure

&P-?A;(H%%!7M';.+QD1/?%

!7M';.D+l'Q$C"D+;,Q$42D+40=(;/D+40M'K2D+EM';"D+EQ$;"+0/6+!7Q$T+$0S2++

.22/+8$(V/+&(+,':8&011"^2+"/+&$2"'+

*'26",&26++,':8&01+8&'),&)'2_"

With Confirmation

By Electron diffraction

Identification of ABX ternary materials

The symmetry of a predicted stable

compound makes possible:

1) Simulation of diffraction pattern

2) Fast identification in the experimental

pattern

Single crystallite

X. Zhang et al. submitted to Nature Materials

Example: TaCoSn – A Semiconductor from 3 metals

Experiment: •!Thin film growth •! Potential absorber applications

Functionality of ABX ternary materials +

4$2('2<,01+,01,)10<(/8+(/+*'26",&26+H0/6+&$2/+8:/&$28"^26L+`Ca+-0&2'"018+*'(S"62+"/7('-0<(/+0.()&+&$2"'+*'(*2'<28_+

Indirect band gap of 1.3 eV Absorption onset at 1.6 eV High absorption above 1.8 eV

L%3;B3%&$C"5,A" L%3;B3%&$C"5,A"

>F'Z%[+1%/-$='-1'%BF='PF'>7F'DR-7F'6#GF'HIJ='HOO\]'MNOHI:''

Missing TaCoSn Compound

Not known in ICSD or ICDD Large stability range Predicted to have semi-conducting gap ~ 1.3 eV (GGA + U)

Validation: Growth of New TaCoSn

Predicted Structure

XRD: Predicted & Measured

TaCoSn Grown

>F'Z%[+1%/-$='-1'%BF='PF'>7F'DR-7F'6#GF'HIJ='HOO\]'MNOHI:''

M62/<5,0<(/+"/+-)1<*$08",+

80-*128+

I)/,<(/01"&:+

;&'),&)'2+62&2'-"/0<(/+

;&0."1"&:+

M/S2'82+R28"#/+G+M/S2'82+M/S2'82+M/S2'82+M/S2'82+M/S2'82+R28"#/+G+R28"#/+G+R28"#/+G+R28"#/+G+R28"#/+G+R28"#/+G+R28"#/+G+

Experiment

Experiment

Expe

rimen

t

Experiment

Inverse Design provides a scientific framework to accelerate the discovery of new materials

Summary

v"*1D$'($"5$(0)1""""""""""""""./$7':"""""""""""""""UI6$'04$1&"L7B6301)"0("L'08;%3"""""""""""""./$7':"%1C"UI6$'04$1&%3".773(""v""5$(0)1"D0%"5$(0)1"9'01;063$(""""""""""""A$3$;871";'0&$'0%"R7'"9e"%K(7'K$'(""""""""""""L7!w1,O"R'74"<!?=O"!"6Q&:6$".L,""""""""""""A$%';/"R7'"40((01)"4%&$'0%3("%1C"&/$0'"RB1;871%30&:"v"T%&$'0%3("5$(0)1"<66'7%;/"?'7%C3:"<6630;%K3$"""""""""""",&/$'"2B1;871%308$("v"T$&%(&%K030&:@"A:1&/$(0E%K030&:"""

cooperation and innovation “without borders” to develop and ready

emerging and revolutionary solar electricity

technologies toward the extended-time success of India’s Jawaharlal Nehru

National Solar Mission and the U.S. DOE SunShot

Program

Solar Energy Research Institute for India and US

SERIIUS

seriius.org

Research Thrusts Th

rust

s Sustainable Photovoltaics

(PV)

Multiscale Concentrated

Solar Power (CSP)

Solar Energy

Integration (SEI)

Act

iviti

es

Proj

ects

Core Projects

Ear

th A

bund

ant P

V

Adv

ance

d P

roce

ss/

Tech

nolo

gy

Mul

tisca

le M

odel

ing

and

Rel

iabi

lity

Hig

h-T,

Clo

sed-

Cyc

le,

Bra

vton

Cyc

le

Low

-T O

rgan

ic

Ran

kine

Cyc

le

Ther

mal

Sto

rage

&

Hyb

ridiz

atio

n

Roa

dmap

ping

, A

naly

sis

and

Ass

essm

ent

Grid

Inte

grat

ion

and

Ene

rgy

Sto

rage

Consortium Projects

• CONSORTIUM PROJECTS: disruptive, transformative R&D • CORE PROJECTS: core industry partner-led and focused

SERIIUS R&D Thrusts

Core Projects

Consortium Projects

Core Projects

Consortium Projects

Developing Low Cost Atmospheric Processing

Integration •! Materials/

devices integrated onto flexible substrates

Inks and synthesis •! Understanding

metalorganic decomposition

•! Molecular precursor design

•! Synthesis to desired materials

•! Inks: •! Absorbers •! Transparent

conductors •! Contacts/

Packaging

Deposition •! Desired

precursor with no residual organics

•! Designed to densify with and allow grain growth

•! Compatible with other layers

Processing •! Device quality:

•! Rapid thermal processing

•! Optical Processing

Acknowledgements: CID EFRC Partner   Senior  Inves<gators,  Staff  and  Students,  Graduates/Alumni  

NREL   Dave  Ginley,  John  Perkins,  Stephan  Lany,  Andriy  Zakutayev,  Peter  Graf,  Jun  Wei  Luo,  Paul  Ndione,  Haowei  Peng,  Vince  Bollinger,  Josh  Mar&n,  Mayeul  d’Avezac,    Alberto  Franceschem,  Arkadiy  Mikhaylushkin    

Northwestern  University  

Ken  Poeppelmeier,  Art  Freeman,  Tom  Mason,  Giancarlo  Trimarchi,  Feng  Yan,  Arpun  Nagaraja,  Jimo  Im,  Kanber  Lam,  Romain  Gau&er,  Kelvin  Chang,  Jeremy  Harris,  Karl  Rickers,  Evan  Stampler,  Nicola  Perry,  Veerle  Cloet,  Adam  Raw    

Oregon  State  University  

Doug  Keszler,  John  Wager,  Robert  Kokenyesi,  Jae-­‐Seok  Heo,  Greg  Angelos,  Brian  Pelae,  Ram  Ravichandran,  Jeremy  Anderson,  Vorranutch  Jieratum,  Ben  Waters,  Emmeline  Altschul  

University  of  Colorado  -­‐  Boulder  

Alex  Zunger,  Liping  Yu,  Lijun  Zhang,  Josh  Ford    

SLAC   Mike  Toney,  Linda  Lim,  Kevin  Stone,  Yezhou  Shi,    Joanna  Bemnger  

Colorado  School  of  Mines  

Vladan  Stevanovic,  Xiuwen  Zhang  

Summary

v"*1D$'($"5$(0)1""""""""""""""./$7':"""""""""""""""UI6$'04$1&"L7B6301)"0("L'08;%3"""""""""""""./$7':"%1C"UI6$'04$1&%3".773(""v""5$(0)1"D0%"5$(0)1"9'01;063$(""""""""""""A$3$;871";'0&$'0%"R7'"9e"%K(7'K$'(""""""""""""L7!w1,O"R'74"<!?=O"!"6Q&:6$".L,""""""""""""A$%';/"R7'"40((01)"4%&$'0%3("%1C"&/$0'"RB1;871%30&:"v"T%&$'0%3("5$(0)1"<66'7%;/"?'7%C3:"<6630;%K3$"""""""""""",&/$'"2B1;871%308$("v"T$&%(&%K030&:@"A:1&/$(0E%K030&:"""

Acknowledgements: CID EFRC Partner   Senior  Inves<gators,  Staff  and  Students,  Graduates/Alumni  

NREL   Dave  Ginley,  John  Perkins,  Stephan  Lany,  Andriy  Zakutayev,  Peter  Graf,  Jun  Wei  Luo,  Paul  Ndione,  Haowei  Peng,  Vince  Bollinger,  Josh  Mar&n,  Mayeul  d’Avezac,    Alberto  Franceschem,  Arkadiy  Mikhaylushkin    

Northwestern  University  

Ken  Poeppelmeier,  Art  Freeman,  Tom  Mason,  Giancarlo  Trimarchi,  Feng  Yan,  Arpun  Nagaraja,  Jimo  Im,  Kanber  Lam,  Romain  Gau&er,  Kelvin  Chang,  Jeremy  Harris,  Karl  Rickers,  Evan  Stampler,  Nicola  Perry,  Veerle  Cloet,  Adam  Raw    

Oregon  State  University  

Doug  Keszler,  John  Wager,  Robert  Kokenyesi,  Jae-­‐Seok  Heo,  Greg  Angelos,  Brian  Pelae,  Ram  Ravichandran,  Jeremy  Anderson,  Vorranutch  Jieratum,  Ben  Waters,  Emmeline  Altschul  

University  of  Colorado  -­‐  Boulder  

Alex  Zunger,  Liping  Yu,  Lijun  Zhang,  Josh  Ford    

SLAC   Mike  Toney,  Linda  Lim,  Kevin  Stone,  Yezhou  Shi,    Joanna  Bemnger  

Colorado  School  of  Mines  

Vladan  Stevanovic,  Xiuwen  Zhang