01 enb276 column_i single

Upload: damo23

Post on 15-Oct-2015

32 views

Category:

Documents


0 download

TRANSCRIPT

  • 5/25/2018 01 ENB276 Column_I Single

    1/46

    --

    Queensland University of Technology

    CRICOS No. 000213JENB276- Structural Engineering 1ENB276 Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    2/46

    Reinforced Concrete Basics 2E(2010) by

    Foster, Kilpatrick & Warner, Pearson Education AS3600:2009 (current BCA still references

    AS3600:2001

    Others

    and Chowdhury, Cambridge University Press

    Concrete Structures 1998 b Warner Ran an Hall& Faulkes, Longman

    CRICOS No. 000213Ja university for the worldrealR ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    3/46

    COLUMNS AND WALLS

    floor systems.

    , ,

    the foundation.

    A Wall is a thin planar member with smallwidth compared to the its length.

    Both may subjected to pure compression, or

    compression with uniaxial orbiaxialbending.

    Queensland University of Technology

    CRICOS No. 000213JENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    4/46

    CRICOS No. 000213Ja university for the worldrealR ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    5/46

    -

    CRICOS No. 000213Ja university for the worldrealR ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    6/46

    max

    CRICOS No. 000213Ja university for the worldrealR ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    7/46

    Short Column Slender Column

    CRICOS No. 000213Ja university for the worldrealR ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    8/46

    A column is classified as short if Le/r

    for a braced column, less than or equal to the greatero an

    *

    2

    *

    1115

    '38

    M

    Mf cC 2001:AS3600for

    N

    N

    M

    Mor

    u

    0

    *

    *

    2

    *

    1

    6.01160

    Le = effective length

    ,

    where

    r = Ra us o gyrat on o t e co umn's cross sect on

    15.06.0/for6.0/5.225.2**

    uouoC NNNN

    15.06.0/for6.0/5.3/1 ** uouoC NNNN

    CRICOS No. 000213Ja university for the worldrealR ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    9/46

    --

    A column is considered

    braced in a given planee a era s a y o

    the structure as a whole

    other suitable bracing toresist all lateral forces in

    that plane.

    in a given plane where lateral

    stabilit in that lane is rovidedby the column.

    CRICOS No. 000213Ja university for the worldrealR ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    10/46

    --

    CRICOS No. 000213Ja university for the worldrealR ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    11/46

    Find design axial force N* and design maximum moment M*max(factored for load combinations)

    design capacities Mu and Nu satisfy

    Maxu

    *

    NNu

    CRICOS No. 000213Ja university for the worldrealR ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    12/46

    es gn o or o umns

    N

    Queensland University of Technology

    CRICOS No. 000213JENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    13/46

    As : Area of Steel

    f : Concrete com ressive stren th

    fsy : Yield strength of the steel

    Tie Diameter

    Spacing and Arrangement

    CRICOS No. 000213Ja university for the worldrealR ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    14/46

    Behaviour and Load Capacity of Columns

    affected by Lateral Reinforcements

    Helical

    Reinf.

    Moderate

    Spacing

    CloserSpacing

    dependent

    effects

    CRICOS No. 000213Ja university for the worldrealR ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    15/46

    u

    85.072.0

    '

    sysgcuo 1

    yield stress of steelcross sectional

    '1 003.00.1 cf

    area of concrete

    concrete strength

    total area of longitudinal reinforcement

    CRICOS No. 000213Ja university for the worldrealR ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    16/46

    must be applied to ensure a uniform compressive strain.

    dpc= Ag x fc x D/2 + A1 x fsy x d1 +A2 x fsy x d2

    Nuo

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    17/46

    -

    Locate the Plastic Centroid of the following section

    Design Parameters

    fc = 25 MPa

    250100

    R10 fitments20 cover

    150Plastic

    centroid

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    18/46

    -

    Calculate 1'

    1

    003.00.1c

    f

    925.0

    ..

    85.072.0 1But within the limits Thus 1 = 0.85

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    19/46

    Example 1-(c) d

    Nu0Cs2

    Cc1

    Cc2

    Cs3

    Cc1 = 0.85x25x600x150 = 1912 kN= = dc1 = 150/2 = 75 mm .

    Cs1 = 5x310x500 = 775 kN

    Cs2 = 5x310x500 = 775 kN

    Cs3 = 4x310x500 = 620 kN

    ds1 = 20 + 10 + 20/2 = 40 mm

    ds2 = 150 - (20 + 10 + 20/2) = 110 mm

    = - =

    Total Nu0 = 4720 kN

    Taking moments about the top flange and noting that the

    internal forces are e uivalent to the external forces ives:

    Cc1.dc1 + Cc2.dc2 + Cs1.ds1 + Cs2.ds2 + Cs3.ds3 = Nu0 .dp

    1912x75 + 638x200 + 775x40 + 775x110 + 620x210 = 4720 dpHence dp = 109.2 mm

    i.e. the plastic centroid is located 109 mm below the top of the Column.

    Due to symmetry the plastic centroid is located 300 mm from left edge.

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    20/46

    Ne

    N

    FailureNu

    Loadingline

    M = N*e M = NeMu

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    21/46

    Section Capacity Line

    (Interaction Diagram)

    N

    FailureFailure

    oes nofail

    M = Ne

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    22/46

    0.003 Principal

    compression

    0.003

    yield strain

    a ance

    failure

    M0.003

    tensionfailure

    > yield strain

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    23/46

    Variation for Columnswhich are under-reinforced in pure bending

    N

    Principalcom ression

    N

    failure, uu u0.c

    Balancedfailure

    uN ,M

    u Nu.bal

    MPrincipaltension N

    u0.t

    0.6 0.8

    Variation for columns which are under-reinforced in pure bendin

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    24/46

    Exam leExam le 22 aa

    Determine the key points A,B,C,D and E on the section capacity line of

    the column section shown in figure below for the case where there is

    mm o re n orcemen n eac ace.

    Bending takes place about the x- axis, fc=40 MPa and fsy=500 MPa

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    25/46

    As cross-section and reinforcement are symmetrical about x axis,

    p as c cen ro es on e cen ro a ax s.

    d = do = 600-74 mm=526 mm

    =As/bd = 2 x 1200 / 400x 600 = 0.01

    Calculation of the squash load Nuo (Point A Cl 10.6.2.2)

    =1.0-0.003 x 40=0.88

    But 0.72

  • 5/25/2018 01 ENB276 Column_I Single

    26/46

    Calculate the point for ku =1.0 (Point B Decompression Point Cl10.6.2.3)

    d = d= 526 mm, =0 and T=0

    Calculate the rectangular stress block parameters

    = 1.05-0.007 x 40= 0.77 & 2= 0.85

    Concrete Compressive region

    Cc = 0.85 x 40x 400 x 0.77 x 526 = 5508 x1000 N

    sc = 0.003 x (526-74)/526 = 0.00258sc = 200 x1000 x 0.00258 = 515 MPa but >fsy= 500MPa sc = fsy= 500 MPa

    en sc= x = x

    Nu = 5508 x 103+600 x 103-0 = 6108 kN

    Taking moment about plastic centroid,

    u - . . -

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    27/46

    Calculating the Balanced Point C (ku=kub)

    ub . , u ub, nb .

    Cc= 0.85 x 40 x 400 x 0.77 x 287 =3005 x 103kN

    sc= 0.003 x (287-74)/287 = 0.00223

  • 5/25/2018 01 ENB276 Column_I Single

    28/46

    Pure Bending (Point D) , u n

    iterating

    until Cc+ Csc-T= 0

    dn(mm)

    ku Cc (kN) sc sc(MPa)

    Csc(kN)

    T (kN) Cc+Csc-T

    (kN)

    . .

    74 0.140 775 0 0 0 600 +175

    dn = 65 mm ku= kuo = 0.124

    66 0.125 691 -0.00036 -73 -87 600 -4

    Muo = 691 x 103 x (300 0.5 x 0.77 x 66) 87 x 103 x (300-74)

    + 600 x 103 x (526 300) mm = 306 kNm

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    29/46

    a cu a ng pure ens on o n

    ,

    the concrete is cracked and has no tensile capacity:

    Nuo.t= (1200 + 1200 ) x 500 N = 1200 kN

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    30/46

    1. Calculate Nu0, Nu0tand locate the plastic centroid

    2. Select a range of strain diagrams as defined by theep o e neu ra ax s u 0an en or eac :

    3. Calculate the corresponding forces in the concrete (C)

    4. Calculate the equivalent axial force and bending

    u, u.

    5. Calculate and Mu, Nu.

    .

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    31/46

    From first principles, derive the Section Capacity Lines

    (interaction diagram) for bending about the X-X axis of

    600 Design Parameters

    300 fc= 32 MPa

    cover = 50 mmR10 ties

    XX

    (fsy= 400 MPa)

    '

    003.00.1 904.032003.00.11 300

    85.072.0 1But within the limits Thus 1 = 0.85

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    32/46

    Exam le 3 b

    Pure Axial Compression Load

    Nu0 = 0.85fcbD + Asfsy

    = 0.85326001000 + 10800400 N= , ,Nu0 = 19,520 kN

    = 0.6 (refer AS3600 Table 2.2.2)

    Nu0 = 11,712 kN

    acts through plastic centroid, dp below top.

    The plastic centroid for a symmetrical section corresponds to the

    elastic centroid.

    Hence d = 500.

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    33/46

    Example 3 (c)

    Pure Axial Tension Load

    Nu0t = -Asfsy-

    = -3,200 kN

    0.8= -u ,

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    34/46

    Exam le 3 dCompression Force in Rectangular Stress Block 0.003

    Ast4 d4

    T

    0.85f'c

    fs4

    Ast3 d3C

    T3

    fs3d3 Mu

    Nu

    dc

    Ast2 d2 T2

    fs1

    fs2 d2

    Strain

    1

    Stresses Forces Internal forces

    = . 5 c u 1

    = 1.05 - 0.007 32 = 0.826

    d1 = 1000 - cover - tie dia -/2= 1000 - 50 - 10 - 32/2 = 924mm

    C = 0.85326000.826ku924 N

    =

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

    , u

  • 5/25/2018 01 ENB276 Column_I Single

    35/46

    Exam le 3 eTension Force in Typical Layer of Reinforcement - I

    Reinforcement may be in tension or compression

    It may be either elastic or yielded.

    In general the tension force (+ve) in the ith layer Tiis given by

    i = st.is.i

    = Ast.is.iEs but |Ti| Ast.ifsyApplying similar triangles to strain diag:

    s.i = (0.003/kud1)( di-kud1)After noting that Es = 200,000 MPa

    i = i- u 1 u 1 st.i u

    |Ti| 400Ast.i(the yield force)

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    36/46

    Exam le 3 fTension Force in Typical Layer of Reinforcement - II

    Tension Force T

    Ast.1 = 3800 = 2,400 mm2

    d1

    = 924mm

    1 - u u ,

    T1 = 1,440 (1-ku)/ku kN provided

    |T1| 4002400 N = 960 kN

    Tension Force T2

    Ast.2 = 2800 = 1,600 mm2

    d2 = 1000 - 300 = 700

    2 - u u ,

    T2 = 960 (700-ku924) / (ku924) kN provided

    |T2| 4001600 N = 640 kN

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    37/46

    Exam le 3Tension Force in Typical Layer of Reinforcement - III

    Tension Force T

    T3 = 960 (300-ku924) / (ku924) kN provided

    |T3

    | 640kN (as for T2

    above)

    Tension Force T4

    T4 = 1440 (76-ku924) / (ku924) kN provided

    4

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    38/46

    Exam le 3 h

    u v x u

    Nu = C- sum of tension forces

    = C-(T1 + T2 + T3 + T4)T

    4d4 dc

    Nu = C-Ti CT

    3d3 Mu

    Nu Equivalent Bending Moment Mu

    T2

    d2

    Taking moments about the comp. flange:

    Mu-Nudp = (T1d1 + T2d2 + T3d3 + T4d4)

    -Cdc

    T1

    d1

    Forces Internal forces

    Mu = (Tidi) -Ckud1/2 + Nudp

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    39/46

    Exam le 3 i

    u = .

    C = 12,4561.0

    =

    T3 = 960(300-1.0924)/(1.0924)

    = -,

    T1 = 1,440 (1-1.0)/1.0 = 0.0 kN

    i.e. zero strain in this layer

    |T3| = 648 640 kN

    T3 = -640 kN (i.e. yielded in comp.)

    T2

    = 960(700-1.0924)/(1.0924)

    = -233 kN (i.e. comp.) provided

    = -233 kN (i.e. comp.) provided

    T4 = 1,440(76-1.0924)/(1.0924)

    2

    T2 = -233 kN

    - ,

    |T4| = 1,321 960 kN

    T4 = -960 kN (i.e. yielded in comp.)

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    40/46

    Exam le 3

    N = 12,456 - 0.0 + -233 + -640 + -960

    Nu = 14,289 kN

    and Mu = (Tidi) -Ckud1/2 + Nudp= (0.00.924 + -2330.700 + -6400.300 + -9600.076)

    -12,4560.8261.00.924/2+14,2890.5 kNm

    = - - - -. . , . , .

    Mu = 1,963 kNm

    Hence (Mu,Nu) = (1,963 kNm, 14,289 kN) is one point on the sectioncapacity lines (interaction diagram) for the column.

    A similar procedure can be adopted for a range of values of ku

    to complete.

    This can readily be achieved in a table.

    Spreadsheets are useful.

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    41/46

    Section Capacity Lines - I

    ku C T1 T2 T3 T4 T1 T2 T3 T4 Nu

    assumin steel elastic after considerin ield

    Tension 0 960 640 640 960 960 640 640 960 -3200

    - - -.

    0.2 2491 5760 2676 598 -848 960 640 598 -848 1141

    0.3 3737 3360 1464 79 -1045 960 640 79 -960 3018

    0.4 4982 2160 858 -181 -1144 960 640 -181 -960 4523

    0.5 6228 1440 495 -337 -1203 960 495 -337 -960 6070

    Bal 0.6 7473 960 252 -441 -1243 960 252 -441 -960 7662

    0.7 8719 617 79 -515 -1271 617 79 -515 -960 9498

    0.8 9965 360 -51 -570 -1292 360 -51 -570 -960 11186

    0.9 11210 160 -152 -614 -1308 160 -152 -614 -960 12776

    1.0 12456 0 -233 -648 -1322 0 -233 -640 -960 14289

    Com 16320 -960 -640 -640 -960 -960 -640 -640 -960 19520

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    42/46

    -

    ku dc T1d1 T2d2 T3d3 T4d4 Tid i Cdc Nudp MuTension 0.000 887 448 192 73 1600 0 -1600 0

    0.1 0.038 887 448 192 -19 1508 47.5 -369 1091

    . . - .

    0.3 0.114 887 448 24 -73 1286 427.8 1509 2367

    0.4 0.153 887 448 -54 -73 1208 760.5 2262 2709

    0.5 0.191 887 346 -101 -73 1059 1188.3 3035 2906

    0.6 0.229 887 176 -132 -73 858 1711.2 3831 2978

    - -. . .

    0.8 0.305 333 -36 -171 -73 53 3042.1 5593 2604

    0.9 0.343 148 -106 -184 -73 -216 3850.2 6388 2322

    1.0 0.381 0 -163 -192 -73 -428 4753.3 7144 1963

    Comp 0.000 -887 -448 -192 -73 -1600 0 1600 0

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    43/46

    -

    15000

    Mu, Nu

    Mu.bal, Nu.bal

    0.7

    0.8

    0.9

    .

    10000)

    0.5

    0.4

    0.6

    5000N(k

    .

    0.1

    0.2

    0

    -5000

    M (kNm) ku as a beam ~ 0.12

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    44/46

    Interaction Dia ram

    Mu, NuMub, Nub

    hiMu, hiNu

    Section Capacity 0.80.9

    1.015000

    Lines IVApplication of the Reduction Factors 0.6

    0.710000

    N kN

    0.3

    .

    0.45000

    0.1

    0.2

    0

    0 1000 2000 3000

    -5000

    M kNm ku as a beam ~ 0.1

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

  • 5/25/2018 01 ENB276 Column_I Single

    45/46

    Stren th Reduction Factors

    (Extracted from AS3600 Table 2.2.2)

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1

    Eff ti l thEff ti l th LL

  • 5/25/2018 01 ENB276 Column_I Single

    46/46

    Effective lengthEffective length LLee

    Le=k L

    u

    CRICOS No. 000213Ja university for the worldrealR

    ENB276- Structural Engineering 1