- vertebrates

87
Chapter 34 V ertebrate Evolution and Diversity

Upload: kingbanakon

Post on 03-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 1/87

Chapter 34

Vertebrate Evolution and Diversity

Page 2: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 2/87

Page 3: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 3/87

Four anatomical features that characterize the phylum Chordata

Page 4: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 4/87

1. Embryos all have a common skeletal structure called a

notochord. The notochord is a flexible rod located between

the digestive tube and nerve chord. 

a. Provides skeletal support. 

b. In most vertebrates, it’s replaced by a jointed skeleton. 

c. Remains of the notochord exist as disks between the

vertebrae. 

2. Dorsal, hollow nerve cord

a. Develops into the brain and spinal cord of the adult. 

Page 5: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 5/87

3. Pharyngeal slits

Water enters through the mouth and passes out through the

slits in the pharynx, without going through the digestive

system. 

i. Slits function as suspension-feeding devices in many

invertebrate chordates ii. Slits have been modified in more evolved vertebrates

for: 

- Gas exchange

- Hearing- Jaw support

4. Postanal tail

Provides propulsion for swimming 

Page 6: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 6/87

B. Invertebrate chordates provide clues to the origin of

vertebrates 

1. Subphylum Urochordata 

 Adult is sessile and feeds via pharyngeal slits. 

Page 7: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 7/87

Subphylum Urochordata: a tunicate

Page 8: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 8/87

2. Subphylum Cephalochordata 

a. Adult form shows chordate features. 

b. Adults feed and swim. 

Page 9: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 9/87

Subphylum

Cephalochordata:

the lancelet

Branchiostoma

Page 10: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 10/87

Page 11: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 11/87

Page 12: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 12/87

Page 13: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 13/87

II. Introduction to the vertebrates 

 A. Neural crest, enhanced cephalization, vertebral column,and a closed circulatory system characterize the subphylum

Vertebrata 

1. Neural crest 

a. Embryonic feature that allows for many unique vertebrate

characteristics, e.g. bones and cartilage are formed from the

neural crest cells throughout the body. 

b. Forms along the dorsal side of the embryo. 

Figure 34.6 (p. 683) – The neural crest, embryonic source of

many unique vertebrate characters. 

Page 14: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 14/87

Page 15: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 15/87

2. Skeletal elements, such as the cranium (braincase), allow

for the big evolutionary feature of vertebrates, cephalization.This gives us the term “Craniates” 

3. Vertebral column is the main support for the body axis. It

allows for large size, fast movement, and protection of the

nerve cord. 

4. The closed circulatory system pumps oxygenated blood to

cells and allows rapid metabolism, rapid movement to search

for food, escape predators. 

Page 16: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 16/87

B. Overview of vertebrate diversity 

Figure 34.7 (p. 684) – Phylogeny of the major groups ofextant vertebrates. 

**Note the three super groups:

Gnathostomes,Tetrapods,

 Amniotes** 

Page 17: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 17/87

Page 18: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 18/87

III. Jawless vertebrates 

 A. These are the most primitive vertebrates. 

B. Groups include hagfish (no skeleton, no

notochord in adult); lamprey (early version of a vertebral

column). 

Figure 34.8 (p. 685) – A hagfish. 

Figure 34.9 (p. 685) – A sea lamprey. 

Page 19: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 19/87

Page 20: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 20/87

Page 21: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 21/87

Page 22: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 22/87

Lamprey on trout

Page 23: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 23/87

Page 24: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 24/87

IV. Fishes and amphibians 

 A. Vertebrate jaws evolved from skeletal supports of

pharyngeal slits 

1. Animals that replaced jawless vertebrates, and are

Gnathostomes. 

2. Members of group have two pairs of fins. 

3. Jaws and fins allowed fish to become active in pursuit of

food and in biting off chunks of flesh. 

4. Jaws evolved from modifications of skeletal elements ofanterior pharyngeal gill slits. 

Page 25: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 25/87

Hypothesis for the evolution of vertebrate jaws

Page 26: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 26/87

 5. Fishes were prevalent about 360 to 400 million years

ago- the “Age of Fishes” 

6. Two groups are alive today: 

a. Class Chondricthyes: Sharks and rays have

cartilaginous skeletons 

Figure 34.11 (p. 688) – Cartilaginous fishes. 

Page 27: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 27/87

Page 28: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 28/87

Osteichthyes: Extant classes of bony fishes

Page 29: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 29/87

Page 30: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 30/87

Lake trout

Whitefish

Sturgeon

WalleyeGreat LakesSome of the natives

Page 31: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 31/87

Great LakesSome Exotics

Rainbow trout/brown trout

Alewife

Smelt

Ruffe

Page 32: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 32/87

Great LakesSome successors

Largemouth bass

Yellow perch

Bluegill

Page 33: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 33/87

Page 34: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 34/87

D. Tetrapods evolved from specialized fishes that inhabited

shallow water   Figure 34.15 (p. 690) – The origin oftetrapods.

1. The first tetrapods to spend much time on land were

amphibians. 

Figure 34.17 (p. 691) – Amphibian orders.

Order Urodela – Salamanders, retain tails as adults

Order Anura – Frogs, lack tails as adults

Order Apoda – Caecilians, lack legs

Page 35: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 35/87

2. There were earlier tetrapods. These were specialized

fish that

• occupied shallow ponds,

• breathed air by gulping, and• developed lobed walking fins for moving from one pond

to another. 

3. Why go on dry land? There were no other competitors

for plants and insects that serve as food. 

Page 36: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 36/87

Page 37: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 37/87

Page 38: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 38/87

Page 39: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 39/87

Page 40: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 40/87

 

4. Amphibians need to return to water to lay eggs and for

development of larvae. 

Figure 34.18 (p. 692) – The “dual life” of a frog. 

Page 41: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 41/87

Page 42: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 42/87

Page 43: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 43/87

V. Amniotes (includes reptiles, mammals, and birds) 

 A. Evolution of the amniotic egg expanded the success ofvertebrates on land 

Figure 34.19 (p. 693) – The amniotic egg.

Page 44: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 44/87

Page 45: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 45/87

1. Amniotic eggs allowed vertebrates to sever the link with

water and live their whole lives on land. 

2. Specialized membranes, called extra-embryonic

membranes that function in gas exchange, waste storage,

and transfer of nutrients.

a. Membranes develop from tissues derived from the

embryo. 

b. One membrane, the amnion, gives the name for the

amniotic egg.

Page 46: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 46/87

Page 47: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 47/87

B R tili h it i id t i ll i t

Page 48: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 48/87

B. Reptilian heritage is evident in all amniotes 

1. Scales of keratin, waterproof skin - prevent dehydration. 

- Reptiles cannot breathe through skin, so all gas exchangeoccurs via lungs. 

2. Shelled amniotic eggs require internal fertilization. Shell

forms around fertilized egg in the reproductive tract. 

3. Reptiles don’t use metabolism to regulate body temperature;

they are ectotherms. Ectotherms absorb external heat (i.e.

sunlight)  Reptiles are able to survive on about 10% of

calories required by mammals. 

4. Oldest reptiles are from the late Carboniferous (about 300

million years ago) dinosaurs and pterosaurs. 

5 M d til i l d 6 500 i th t i f

Page 49: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 49/87

5. Modern reptiles include 6,500 species that are in four

groups: 

a. Testudines – Turtles - Some species returned to water; all lay eggs on land. 

b. Sphenodontia – Tuataras

c. Squamata – Lizards, snakes - Lizards are the most numerous group. 

- Snakes are descendants of lizards and have vestigial

pelvic and limb bones. 

d. Crocodilia – Crocodiles, alligators 

- This is the group most closely related to dinosaurs 

Figure 34.24 (p. 697) – Extant reptiles. 

Page 50: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 50/87

Page 51: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 51/87

Page 52: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 52/87

C Bi d b f th d til l d t fl

Page 53: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 53/87

 C. Birds began as feathered reptiles, evolved to fly: 

1. Honeycombed skeletons are light and strong  good for

flight. Figure 34.25 (p. 698) – Form fits function: the avian wingand feather.

2. Toothless for weight reduction. 

3. Endothermic = use metabolic energy to generate heat.

- Feathers provide insulation. 

- Efficient circulatory system supports high rate of metabolism

necessary for flying. 

4. Acute vision Large brains that allow complex behavior. 

5. Wings - Flight enhanced the ability to hunt and scavenge,

escape predators, and move with changing seasons. 

Page 54: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 54/87

Page 55: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 55/87

6. Theropods were the closest dinosaur relative ofbirds. Example: Velociraptor    Archeopteryx  is an example

of a Mesozoic bird that shows reptilian features. 

Figure 34.27 (p. 699) –  Archaeopteryx , a Jurassic bird-reptile.

Page 56: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 56/87

Page 57: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 57/87

Page 58: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 58/87

Page 59: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 59/87

Page 60: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 60/87

7. Modern birds include about 8,600 species.

Some are flightless = ratites. 

Figure 34.29 (p. 701) – A small sample of birds. 

Page 61: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 61/87

Page 62: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 62/87

D. Mammals diversified extensively in the wake of the

Cretaceous extinctions 

1. Radiation of mammals occurred during two events: 

a. Extinction of dinosaurs 

b. Fragmentation of continents 

2. There are about 4,500 species of extant mammals 

3 F t f l

Page 63: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 63/87

 3. Features of mammals: 

a. Defined by Linnaeus as having mammary glands, which

produce milk rich in fats, sugars, proteins, minerals, andvitamins. 

b. Hair and subcutaneous fat help retain metabolic heat. 

c. Most embryos develop in a uterus. In placental mammals,

the lining of the uterus and extraembryonic membranes form

the placenta. 

d. Large brains and long period of parental care. Ability tolearn. 

e. Differentiation of teeth for efficient eating. 

Page 64: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 64/87

4 Th li t l l d f til b t 220

Page 65: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 65/87

4. The earliest mammals evolved from reptiles about 220

million years ago. Therapsids gave rise to mammals. Early

example is the Morganucodon in previous figure. 

5. Major groups of mammals: 

a. Monotremes – lay eggs and produce milk, but have no

nipples. - Platypus, echidna

b. Marsupials – born early in embryonic development; climb to

mother’s pouch and attach to a nipple. 

- Opossum, kangaroo

Figure 34.31 (p. 703) – Australian monotremes and

marsupials.

Page 66: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 66/87

Page 67: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 67/87

Page 68: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 68/87

 

c. Eutherians – long pregnancy with embryonic attachment tomother in uterus via placenta. 

- Human, Wolf

Figure 34.32 (p. 704) – Evolutionary convergence of marsupial

and eutherian (placental) mammals. 

Table 34.1 (p. 705) – Major Orders of Mammals 

Page 69: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 69/87

Page 70: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 70/87

Page 71: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 71/87

Page 72: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 72/87

Page 73: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 73/87

Page 74: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 74/87

VI. Primates and the evolution of Homo sapiens 

Page 75: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 75/87

p

 A. Primate evolution provides context for understanding

human origins 

1. Hands and feet adapted for grasping. Possess opposable

thumb. 

2. Large brains allow complex social behavior.

Figure 34.35 (p. 708) – A phylogenetic tree of primates. 

Page 76: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 76/87

Page 77: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 77/87

Page 78: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 78/87

Page 79: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 79/87

Page 80: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 80/87

B H i id li di d f th i t b t 7

Page 81: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 81/87

B. Hominid lineage diverged from other primates about 7

million years ago.  Humans compared to other hominids: 

a. Brain size  – large size allows development of language andsocial behavior. 

b. Jaw shape  – shortened to give a flatter face. 

Page 82: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 82/87

Page 83: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 83/87

c. Bipedalism = walking on two legs. 

- Frees hands to do other things. - Eyes set higher; can see farther. 

Page 84: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 84/87

Page 85: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 85/87

Page 86: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 86/87

d. Females smaller  than males 

e. Extended parental care changes family structure andenhances learning and social behavior.

Page 87: - Vertebrates

8/12/2019 - Vertebrates

http://slidepdf.com/reader/full/-vertebrates 87/87