| or pu1-11 flame spectra from 1.5 meter grating spectograph 12-54 flame spectra from scanniug...

120
I I 4 or t Roproduced by tho CLEARINGHOUSE for Foderal lcientific & Tochnical Information 3pringfiold Va. 22151 | or pu - t 0 '- ... :,,,, .- t . • " . . . . . . .. . ... .- . . ..

Upload: others

Post on 24-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • I I

    4 or t Roproduced by tho

    CLEARINGHOUSEfor Foderal lcientific & TochnicalInformation 3pringfiold Va. 22151

    | or pu- t 0'- ... :,,,, .-

    t . • " . . . . . . .. . . . . .- . . ..

  • U. S. NAVAL AM4UNITION DEPOTCrane, Indiana 47522

    RDTR No. 1261 March 1968

    STUDY OF SPECTRA OFMETAL-OXIDANT COMBINATIONS

    R. M. BluntDenver Research Institute

    The report was reviewed for adequacy and technical accuracyby B. E. Douda.

    Released

    H. Calkins, ManagerConcept DivisionResearch and Development Department

    L- -"

  • UNCLASSIFIED

    Final Report 3976-6803-F

    STUDY OF SPECTRA OFMETAL-OXIDANT COMBINATIONS

    Final Report

    1 March 1967 - March 1968

    byR. M. Blunt

    Prepared under Contract N00164-67-C-0320 for the Research andDevelopment Department, U.S. Naval Ammunition Depot, Crane, Indiana,47522 1 y the Mechanics Division, Denver Research Iw'ititute, Uni-versity of Denver, Denver, Colorado, 80210.

    UNCLASSIFIED

  • FOREWARD

    This report summarizes and describes the work accomplished onContract N00164-67-C-0320 during the period from February, 1967through February, 1968.

    It is a pleasure to acknowledge the work of Denver ResearchInstitute personnel who have contributed to the material containedin this report; they are Mr. Ralph Williams, Mr. James Brewer,Mr. Robert Marchese and Mr. Vincent Miller. The author also hasbeen aided by discussions of flare problems with Mr. WilliamCronk, Capt. Gene Holder and Mr. Lyle Gorzkiewic, of Eglin AirForce Base, Target and Missiles Division, Dr. Robert Evans ofAtlantic Research Corp., Dr. Hal Waite of Ordnance Research Inc.and Mr. B. E. Douda, Mr. James Swinson ad Mr. Duane Johnson ofthe U. S. Naval Ammunition Depot, Crane, Indiana, Research andDevelopment Department.

    I."

  • rN

    TABLE OF CONTENTS

    Page

    I. ABSTRACT . . ......... . . . . . . . . 4

    11. INTRODUCTION ... .

    111. EXPERIMENTAL WORK .. .. .. .. .. .. .. .. . .. 7

    IV. DISCUSSION & CONCLUSIONS .... ................ ... 27

    APPENDIX . .. .. .. .. .. .. . .. Plates 1-81

    Plate

    1-11 Flame Spectra from 1.5 Meter Grating Spectograph

    12-54 Flame Spectra from Scanniug Spectrometer

    55 Bausch-& Lomb Grating Spectrograph Optical Train

    56 Transfer Calibrations from Step N to Step N+1 ofJarrell-Ash Microdensitometer

    S7 Emissivity of Tungsten vs. Temperature and Wavelength(DeVvs)

    58 Photographic Photometry Computer Program

    59, 60, 61 Sample Print Out from Program in (F)

    62 Plot of Seidel Function vs. Intensity

    63 S-10 Photo cathode Relative Response vs. A Wavelength

    Calibration of Scanning Spectrometer Records

    65 Fore Optics Arrangement for Scanning Spectrometer

    66,67 Tungsten Strip LAp Records from Scanning Spectrometer

    68 Amphitude Correction Factor for Scanning Spectrometer

    69 Color Correction Factor for Colorimeter

    70-81 Chromaticity Diagrams for Various Flare Compositions

    3

  • I. ABSTRACT

    The time-integrated grating spectra obtained at a dispersionof 14.8 R/rm from flames produced by Mg..Ba(NO ) , Mg-NaO 3 , Mg-Be(NO) 2

    Sr(NO) -TFE, Al-NaCl04 -PVC, Al-KCIO-'PVC, 2).-Sr(CIO0)3-PVC,B-Ba(CI 4 1,-iVC, B-KCIO4 -PVC, M-LIClO4 -PVC, Mg-NaC10 4 at differentweight percentages are photographically reproduced.

    These spectra have been obtained from flames burning in ambientair ranging in pressure from 630 torr to 70 torr.

    Time-resolved spectra have been obtained from these same com-positions, burning at the same ambient pressures, with a Perkin ElmerModel 108 Scanning Spectrometer at a rate of 3 per second. Photo-graphic enlargements of typical spectre as photographed on the CRO areshown.

    The colorimetric purity, dominant wavelength, intensity andintegrated light output from the same mixtures burning under the sameconditions are tabulated and also plotted on C.I.E. chromaticitycharts.

    The absorption of the light resulting from its passage throughthe smoke evolved during combustion has been determined and absorptioncoefficients tabulated for the smoke from several different composi-tions and ambient pressures.

    Suggestions have been made for further studies of combustionproblems.

    4

    -JT

  • I

    II Introduction

    The data presented in this report were collected to determine theintensity and spectral distribution of the visible radiation produced bythe alkali and alkaline earth perchlorates when burned with magnesium,aluminum and boron. This report makes available for reference spectraldata on the materials commonly employed as fuels and oxidants in solidflare compositions, when added to the data presented in earlier studies.

    Because the work to be done under this contract was in several re-spects an extension of the work done under Contracts N00164-10520 andN164-11171 and reported i- RDTR35 and RDTR91, U.S. Naval Ammunition De-pot, Crane, Indiana some of the problems which were noted during thosestudies have been re-examined. As a result, it was hoped that more in-formation could be obtained from the spectra with a moderate increase ineffort. The discussion presented later will explain in detail the mannerin which it was hoped to obtain this additional information.

    The supply of materials that had been used in the previous tasks hadbeen depleted. Some forty suppliers of chemicals were contacted to deter-mine the best source - in some cases the only source - from which to ob-tain the alkali and alkaline earth nitrates and perchlorates and magnes-

    ium, aluminum and boron needed in this study. Anhydrous, - 320 mesh mat-erials were preferred, but proved difficult to come by. Material whichwas supplied by the U. S. Naval Ammunition Depot, Crane, Indiana consist-ed of perchlorates of barium and strontium and a quantity of amorphousboron. Supplies of powdered aluminum were donated by Reynolds Metals assamples and powdered anhydrous perchlorates of lithium, sodium, potassiumand barium were finally obtained from the Geo. Smith Co.* It was necessaryto regrind most of these commercial materials to the desired size.

    Because of the "chimney effect" which occurs when flares are burnedin red fiber or other flame-resistant cases, which has some influence onthe color, spectra and temperatures of the flame, it was hoped that itwould be possible to eliminate the casing. Thin-walled epoxy tubing,epoxy and polyurethane coating materials were investigated.

    Data was acquired from the combustion of a number of pyrotechnic com-positions containing Mgs Al or B as the fuel and Na, K, Ba or Sr perchlor-

    ates as the oxidants. Mixtures containing magnesium and Na, Ba or Sr nit-rate were also tested, primarily to provide a direct experimental link withthe earlier work and also as a convenience to the reader by providing ex-amples of the spectra from Mg-NaNO3 . It is thus less necessary to referto reports RDTR 91 and RDTR 35. Te earlier work on the Mg-Ba(NO3)p/Sr(NO3) mix, (F-16), had not been completed in time to uppear in PDTR 91

    and was therefore included.

    G. Frederick Smith Chemical Co., Columbus, Ohio

  • Smoke produced during combustion tends to interfere with measure-ments of the intensity and color of the flare rather early in a burn.A procedure was adopted which aided the estimation of the magnitude ofthe smoke obscuration, which is described in detail in Section III.

    It is assumed th3t readers of this report are, generally, familiarwith the history and state of the art in pyrotechnics. However, thosewho are new to this field may find it convenient to browse through somebackground material. As an aid to this process, a few references tothe literature are included in the bibliography. Unfortunately, agreat deal of interesting material is not readily available but mustbe uneah'thed from the DDC files; this task must here be left to theindividual. (15-24)

    6

    4

    I

  • III Experimental Work

    Most of the equipment used in this work had been acquired, and des-cribed, in the course of preceding work in this area. Thereforeit willnot be discussed in detail in this report. However, some changes havebeen made to improve the extent or accuracy of the data produced by thevarious units.

    A new photomultiplier was purchased for use with the Perkin-Elmer 108Spectrometer. This is a Type 6217, 10-stage tube gith S-10 response (Ag-Bi-0-Cs) which exhibits a current gain of 2.5 x 100. The 10 percent res-ponse points fall at 3200 + 150 angstroms and 6950 + 350 angstroms, thusproviding output over about the same wavelength region as the LinagraphShellburst film sensitivity covers. Peak response is at 4500 + 300 ang-stroms. This tube has been mounted on a plate which fits the kinematiclocating V-s of the I.R. detector-ellipsoidal mirror mount and is inter-changeable with it.

    The electronic colorimeter head which was built two years ago has twicebeen recalibrated. A plot of the results obtained is shown in Figure 1.Wratten £glatin filters 65 and 22, and a narrow band-pass interferencefilter with peak transmission at 0.557 micron were used to color the lightfrom a 35 mm slide projector, thus providing a source of illumination ofapproximately known dominant wavelength and purity. Care being exercisedto obtain even illumination across the four cells of the colorimeter. itwas found that the results from the Wratten filters were in good agreementwith the dominant wavelength and purity values given in "Kodak WrattenFilters for Scientific and Technical Use". See also Plate No. 63.

    The measured values were 0.501 micron, 65 percent purity and 0.595micron, 100 percent purity for the 65 and 22 filters, respectively. Thepublished values were given for Illuminant A as 0.501 micron, 74 percentpurity and 0.599 micron, 100 percent purity. The same tests were repeatedwith a piece of glass inserted in the light path. This glass is used tocover the porthole on the High Altitude Chamber through which the measure-ments will be made. A shift was found to occur toward the green; valueswith this glass in place are 0.506 riacron, 65 percent; 0.589 micron, 93percent. Although the color change represented by the difference betweenmeasured and published values is almost negligible without the portholeglass in the path, the change caused by the glass is (0.005, 0.010 micron)which is from 5 to 10 times the minimum noticeable amount. (See 10.) Theresponse of the y-cell to intensity was also checked and found to be with-in 10 percent of the value found previously.

    The compositions of the mixes that have been made for the present studyare shown in Table 1. Prints of typical spectra recorded on the B & L 1.5 m.grating, from a point in the flames 1/2 - 3/4" above the flare casing, areshown in Plates 1 -ii. Spectra were obtained simultaneously with the Per-kin-Elmer Model 108 and the B & I grating spectrograph. Some of the typi-cal spectral records from the P-E 108 spectrometer are reproduced in PlateNos. 13-54. In addition to these records, the data obtained simultaneouslyfrom the colorimeter Lre presented in Table 2.

    *See Bibliography 12, 13, 14. 7

    i - *--,-*-*,---J-.,, .....---- - - _____

  • 1 -1-Jt W-1

    41-

    7k I-A It -tll 4 ,Z

  • TABLE 1

    Composition Code, Weight Percent

    Mix Al B Mg Li Na K Ba Sr Na Ba SrNo.F- C104 C104 C104 (Cl04)2 (01o4) NO (011 2 (NO )2 T'EIFVCI

    JMix 3 25 6 5 10135 65

    3 40 604 40 30 30

    725 65 108 60 1 4014 26 '74 I15 30 60 1016 516 37 7 530 35 6I 531 3 _. 631 _ 532 35 --- 66 533 37 I 534 37 535 27 68 I 536 37 58 ___ 537 37 - 8538 37 58 539 37 58 I 540 37 58 I 541 37 - 58 542 37 5 I 543 37 58 544 37 58 5 545 58 37 I I 546 68 271 I 548 58' i 37 549 58 37 i5

    50 58 37 551 68 27 5 -52 58 37 553 58 37 554 58 37 .7555 5g 37 I 556____837 , 5

    5 37157 I 5 37 !558 ] 5 1 37 , 559 I 15r ,.__.,_ - 5

    9

    HI-. . - - - - - - - - -

  • TABLE 2

    Flare Color, Intensity and Related Data

    [Burn Candela Dominant

    Nun ix Pressure Time ' ..onds Candela Wavelength. No. tort secs 'Total Average Av. rnt, Purity

    1 F-1 630 5.5 26536 o300 608 0.7482 F-1 630 9.0 37468 4027 607 0.8183 F-1 630 No color data; Visually yellow-white, bright

    14 F-1 630 No color data; Visually yellow-white, bright5 F-3 630 9.2 3oo4 3445 603 0.822

    F-3 635 7--.3 22073--- 29 - 597 - - Y -7 F-4 630 24.5 hand calc. 4070 600 0.9408 F-4 630 20.0 (Approx). 3764 593 0.910

    F-4 630 Run0 I120005 4181 609 0.904~-3 O [10 -13 inclusive were made to determine

    11 F-3 630 the best control settings for the P-E Model12 F-4 630 108 scanning spectrometer.13_ F-4 630

    F-3 - 3 _ 77__No-colorimeter data. Visually, blue-15 F-31 630 90 white flame noted on all Runs 14-21.16 F-31 630 68 Data is lacking because the flame is of17 F-31 630 75 low intensity and is often forked or

    18 F-31 630 73 skewed from its expected location. T, s,19__ F- 31 630 73 radiation is not focussed on the spectro-20 F-31 630 75 meter/spectrograph slits.21 F-31 _630 _75 -22 ... F--M -- '-- -- ..... Burned- less than a secs_ no djaa_

    3 - - -Colorimeter records off-scale at 20:1attenuation.

    N --- i -630......... None of these attempts to burn F-14 or25- F-15 mixes were successful. The flares26 F-11 630 refused to ignite by any of the usual27 F-14 630 techniques.

    29 F-1 5 6303-0 IF-15 __A50 - 1____31 IF-16 630532 1 0 94352 17155 595 0.628

    33 F-16 630 5 94352 17186 87 0.629F 6 _ A -- Wuld-not burn

    35 ' F-16 300 I 7 109396 l--i-5- 577 0.7236 F-16 300 I7.6 112336 1 14978 580 0.72937 F-16 630 5 13-2038 20394 577 0.668 F-16 150 11 112038 1i0181 580 0.7 9

    ]o

  • TABLE 2 (Continued)

    Flare Color, Intensity and BeadData

    Bur n Candela DominantRun Mix Pressure Time Seconds Candela WavelengthNo. No. torr sees Total Average v.-P_ A-rity

    75 F-35 150 8 3321 416 569 0.61376 F-35 150 7.5 3668 489 576 0.65777 F-35 70 9.5 295 42 595 10.552

    'PF-3'5 7 0 10 164 i86-68179 F-35 150 7 3829 547 574 0.6280 F-35 630 4.5 33360 7417 576 0.5618i-- -F-1 -6 6 6 32968 5495 568 ... 159482 F-34 630 6 29160 4860 569 0.5883 F-34 300 8 21196 2649 _ _ 570 .6o6

    -- .F-3 3--030 . 8 22723 2840 571 --.-61-F-34 150 11.5 16o82 1398 567 o.634

    -3 J .-3 70 __20.. 2050 58 588 0.74387-- F-34 70" 20 12203 " 610 586 0.71888 F-34 70 No useful data; Instrument difficulties.89 Not a flare bun, but calibration check of

    P-E 108. MIL 657 .79390 F-39 630 19 1 -4i4i .... -3 595 586 575 0.79391 F-39 630 20 6600 3669 598 593 591 0.8092 F-39 630 19 101297 5333 597 593 587 0.83993 F-39 300 30 92243 3181 604 591 582 0.889

    ~~-2!.J-K39- 00 _27 918 5841612 94 82 0.895 F-39 150 31 226857- f56 -2 597 587 0.96 F-39 150 40 40073 1028 602 595 591 0.92897 1 F-39 70 42 10242 282 619 595 588 0.91898 F-39 70 46 7274 232 546 0.785

    99-- -E~ 300 29 59137 2262 581 590 599 0.90766 '25779 0599- 6.9a . F-389 540 59101 Y~8- --'d -9 ... -- 57794 12 5FO 6 7- -m102 F-34 630 8 32469 5396 571 569 567 0.597103 F-34 300 1 9 36023 5130 571 572 574 0.592104 F-34 300 11 30036 3334 581 571 567 0.63105 F-34 300 12 27448 2495 597 573 561 0.642106 F-34 630 8 37964 1 5423 584 571 570 0.619107 F36 630 . . .. No dat; visualypin . -108 i F-38 630 53 20467 418 1668 599 555 0.536109 P 1-38 300 72 2758 42 I644 596 580 0.586110 ' F-38 300 70 3481 51 609 591 548 0.578il F-38 150 64 1895 33 I 603 583 563 o.6o4 I

    112 F-38 150 Uneven, split flame poor burn, Visuallyl___ ,_- 'dpink,* dim.. _

    12

  • TABLE 2 (Continued)

    Flare Color, Intensity and Eelated Data

    Burn Candela Dominantn Mix Pressure Time Seconds Candela Wavelength

    No. No. torr secs Total Avera&e tjqAvMKn I"Purit_

    112 F-38 150 65 3552 56 6Ol 587 568 o.6o9114 F-38 630 51 5603 35 596 10.55

    5{..F-38 70 Wouldn't burn in 3 attempts.116 F-33 630 Very irregular burn - not reduced; visually red,

    dim. I I117 F-33 630 45 36L 84 631 585 501 o.691118 F-33 630 50 3680 75 627 594 499 _0.82

    11 F33 300 55 1352 167535J 4 3120 F-33 300 Record unusable; visually red, dim. Flame split.122 F-33 300 Only very small pnrt of flare burned - rot use-

    ____ ful.4123 F6-3 Record went off-scale; visually pink.124 F-56 630 29 14636 585 627 595 576 0.503125 F-56 630 31 5421 243 661 602 519 0.511126 F-56 300 38 7594 238 642 5911 557 0.501

    1 F-2 : 6029 159 _635 6o0.57Y_ .[9_56_.18 -- 150 72 367 52 637 588 567 0.546129 1 F-56 150 73 3936 58 609 585 572 0.645130 r-56 70 71 1297 39 595 557 530 0.555131 F-56 70 77 1850 25 626 582 527 0.5 61132 -T b0- 62~~ 595 593 590 08133 F-57 630 12 92528 8412 606 597 594 0.83134 F-57! 150 25 37618 1728 596 590 580 0.908135 F-33 6 53 -Fare burned -outh dbwni _ ,.epo build- .I . .Up.me as moutj- _burn-.... ......136 F-57.. 300 1- 17--- 89790 5612 603 593 586 0.83211137 F-57 300 20 102892 5716 6o6 600 594 0.879138 F-57 150 26 23921 1139 659 596 500 0.852

    39 F-57 150 29 .3175 297I 595593581 "8 --

    140 F-57 70 o0 7125 193 603 586 559 0.6571 1 F-57 70 . 39 8400 221 624 610 592 0.83

    '13rt

  • The effects of the smoke produced during combustion on the radiationreacbing the colorimeter have been documented by simple measurements. AG.E. Co. Type DXW, 1000 watt, quartz lamp mouwte, in the altitude cham-ber was lit before the burn and the red, blue and green response from thecolorimeter recorded. After the burn, the lamp was again lit and the sameset of responses recorded. A small circulating fan was then turned on tostir and homogenize the smoky atmosphere and a third set of readings taken.The ratio of the second or third readings to the first set provides ameasure of the change in transmission due to smoke and of the shift incolor, if any, due to absorption and scattering by the smoke. It seemsthat the ratio obtained from the stirred condition is most useful as anaverage measure of smoke effects, because it eliminates wild variationscaused by uneven distribution of the smoke in the chamber. Data on smoketransmission were not taken until the first fifty or so burns of the curr-ent study had been made. The idea was conceived at that time and the datawere obtained oh all of the subsequent runs, when possible. it is believedthat it may be the only data readily available on the effects of smoke onthe output from small laboratory tests of pyrotechnic illuminants and sig-nals. It is artificial in that the field conditions under which pyro isused and the laboratory conditions are not very comparable. However, manytests have been made in the laboratories of those studying pyrotechnicsunder conditions somewhat similar to these. The effects of smoke are verynoticeable when these materials burn in confinement; the data reported

    here, it is hoped, may be useful in correcting for these confined condi-tions of burn. A better extrapolation of small-scale laboratory tests tofull-sized flares for field use may thus be possible.

    Table 3 contains the data obtained from the colorimeter readings ofthe 1000 watt lamp prior to burning a flare. A plot of the candela, domi-nant wavelength and purity of the lamp alone is presented in Figure 2 topermit a rapid assessment of the range of values. Within any one groupof tests during a period of one or two days the variation tends to be lessthan the overall variation. Since the purpose of the readings is to obtainrelative values of intensity and dominant wavelength; i.e., without andwith smoke in the radiation path, the long-time changes are not especiallysignificant. They are of interest insofar as they may be considered to re-present the stability of the entire lamp-plus-colorimeter system. heshift of about + 10% in lamp intensity, + 1/2% in dominant wavelength isconsidered acceptable. The shift is due both to the variations in linevoltage applied to the lamp, which would be affected by about + 15% inluminance by a + 5% change in voltage, and to lamp aging. If the worstvariations are dropped out the luminance change is of the order c,2 5%.The values of dominant wavelength and purity shown in Table 4 are unaffect-ed by small changes in filament temperature, to the accuracy to which thiswork is done. The values in Table 5 were computed from the initial andfinal values of luminance obtained when the run was made, and only short-term fluctuations of line voltage would be effective in altering them.While these fluctuations can occur, the usual experience has been thatthe line voltage will remain steady over the period required for one ofthese determinations. The variations shown in Figure 2 occurred over aperiod of weeks and probably give a pessimistic picture of the accuracy

    14

  • F\

    TABLE 3

    Reference Lamp Stability

    Run Dominant IRu DominantNo. Candela Wavelength Purity No. Candela Wavelength Purity!

    42 2056 477 0.382 100 2239 577 0.4 7 243A 2075 579 0.462 101 2328 576 0.47944 2153 578 0.467 102 No Data45 2084 577 0.463 103 1 No Data48 194 578 0.479 104 2328 576 o.479

    9- 2122 579 0.479 105 2286 -5-7- . -0.46850 2081 579 0.472 106 2286 576 0.47161 2395 578 o.465 107 2275 575 0.4763 2241 579 o.475. 108 2223 575 0.463 I64 2297 578 o.465 109 2270 575 o 469

    2329 ,-8- -. 46 10 -6 2w3 5f. 3. 467 2517 I 578 0.468 ill 2303 576 0.47468 2542 I 593 0.509 ].12 No Data72 2373 578 0.47 113 2352 576 0.47773 240l 579 _ 0.47 j 114 2270 -_575 0.476--W ----2-3-9- ! -5 . ..I . . . i... .- oD ...75 2407 579 0.475 116 2264 i 576 0.48976 2451 579 0.474 117 2328 577 0.495 i77 2451 579 0.474 118 2327 577 0.48I8 22_ 580 0.48_7 119 2281 576 0.471w79 2272-- 58 01.'5--i2 - 2277 56.47280 2435 580 0.486 211 2460 575 0.59381 2351 583 0.456 122 I No Data82 2586 578 0.484 123 2416 576 0.478I

    ___._. 9 .__9_L 9.474 124 2396 I-576 _o.47484 2357 578 0.48 11251 2217 576 0.471185 2376. 578 0.483 126 2273 576 0.47186 2382 ' 579 0.484 127 2325 576 0.49287 2398 579 0.482 128 2303 576 0.48690-_ Z259 _ .. o.462 1 129 .42231 575_ . 992 2328 577 o.47 130 237 576 0.48

    576 o.475 135 2342 7 ~ -9 231577 5748 136 2338

    93 2355 576 o0.482 1132 2295 576 0.464 '

    94 2314 577 0.475 137 2338 576 o.472i95- ---2. -2.-...- -I -_ 77- ...... L -;.0 4 ..-__, Y- _ . _ 5. 76 o._ 2_ '96/. 13227 22 -576 O_5124--97 | 2286 577 o .483 1 2363 575 o.47198 2314 577 0 048 137 2368 577 0. 489L99] s _Ji 51 0.L)48 1A M- 5 .. 5.7.6_...o.7.

    15

    - -

  • .74

    .43

    4

    io

    16

  • "I

    TABLE 4

    Observed Effects of Smoke on Dominant Wavelength

    Run] Mix DominantNo. No. Candela ... .... IWavelength __ rit

    Clear Smoke Clear Smoke Clear Smoke

    61 F-36 2394 790 578 577 0.47 0.496 F-36 2241 802 579 579 _ _ 47 0.5

    64 - 3 29 626o4 05578 578

    65 F-36 234 1310 577 5807 F-36 2516 1314 578 577 0.47 0.58

    6 F-35 25612579 578 0.47 0572 F-35 3f2578 580

    77 F-35 241. 167 579 579 0.47 0.5378 F-35 2256 i671 580 579 0.49 0.57

    75 F35 4u7 L>7 579 576o.47 0.57

    79 F-35 2272 22 580 579 0.5681 F-34 251 1667 579 574 0.538 F-34 256 598 578 580 0.48 0.5583 F-34 2269 585 579 580.4 0.5880 -35 245 , 58 579 lo.49 1o.56

    81 -34 25111 578 58 o.4 o.5683 F-34 226 585 579 58o4 0.5684 F-34 2357 634 578 578 0.48 0.58

    85 F-34 2376 1059 78 578 0.48 0.5686 F-24 2382 1210 579 578 0.48 0.5687 F-3 29 1260 ,579 578 o 090 F-39 2215 5 576 573 o91 F-39 2328 578 577 574 0.47 0.5192 F-39 2341 606 577 574 0.47 0.5293 F-39. 2355 743 576 575 0.48 0.5894 F-39 2314 645 577 575 o.48 0.5195 F-39 2273 577 576 0.47 0.5796 F-39 2273 457 577 577 0.47 0.5897 F-39 2286 1375 578 575 0.48 0.561 F-38 57 578 048 0.5899 ~39 322 01 577 1576 ~

    10 0 F-38 223 57 7 0.76o.105 F-34 2286 581 576 I576 0.47 0.60106 -F- - 22-86 1 4481 _ __-.57 579 0.47__ 25L§107 F-38 2275 291 575 576 0.47 0.49108 F-38 2223 311 575 578 0.46 0.47109 F-38 2270 32 07 7 .47 0.48110 _F-38 -- 2330j 345 __575 576, o___ .47 0.49

    17

  • i

    TABLE 4 (Continued)

    Observed Effects of Smoke on Dominant Wavelength

    ~Run Mix 7 Dominant1No. No. Candela Wavelength _ _ Purity

    Clear Smoke Clear Smoke lear el

    1111 F-38 2303 419 576 575 0.47 0.481113 F-38 2352 420 576 575 0.48 0.48:114 F-38 2270 504 575 574 0.48 0.461116 F-33 2264 1505 -576- 577 6- .9 0.57117 F-33 2328 1080 577 575 0.495 0.581118 F-33 2328 1450 577 578 0.48 0.561119 F-33 2281 1575 576 576 0.47 0.56120 F-33. _23_7j 196 .576 76 0.47 0.56

    123 F-56 2316 340 576 575 0.48 0.48124 F-56 2396 369 576 576 0.47 0.49

    1125 F-56 2217 261 576 577 0.47 0.47:126 F-56 2273 295 576 577 0.48 0.47127 F-56 325_ _295 576 o.549_ 0 .49128 F-56 2303 362 576 577 0.49 0.491129 F-56 2231 372 575 577 0.49 0.5130 F-56 2237 437 575 575 0.48 o.47131 F-56 2314 421 576 576 0.48 0.46132 F-57 2295 523 -576- 0o. --. -53-i133 F-57 2336 604 576 576 0.47 0.55134 F-57 2413 . 1118 . .... 576 575 o.0.46 0.58

    -F-3 240 - 1603 57 '5TG- f- -,-- -6 f1-36 -57 2363-" 90 3- 575 577 T7 6h,137 F-57 2360 923 577 577 0.49 0.59138 F-57 2275 1352 576 577 0.48 0.551139 F-57 2330 1297 576 578 o 0.47 0.58!140 F-57 2162 1420 575 575 0.46 0.551_14_1_._F-57 2149 1460 1.575_ 5761 .o.46 0.54.

    18

    -. 7.

  • of this set of measurements.

    Computations were made using Lambert's Law with the initial lamp can-dela as Io and the final candela reading, I, obtained when the smoke hadbeen homogenized by stirring.

    I a 10 e-ad

    The value of (a) is in units of cm-1 and is listed in Table 5.

    The last column in Table 5 gives the path length over which a reduc-tion to l/eth of the initial intensity would occur. This may be moreeasily visualized in terms of physical effect than the value of (a) is.Because the data were readily available as a result of the above record-ings, it seemed useful to look for evidence of a shift in the dominantwavelength of the source as seen thru the smoke. The data in Table 4 illus-trate the changes that may be expected. No change in color due to passageof the radiation through the smoke cloud was measured. Either the effectis too small to measure for these smokes, with this apparatus, or a muchlonger path is required. Purity is higher through the smoke, by 10% -20%; the reason is not apparent at this time.

    The following outline discussion summarizes the investigation whichwas made in an effort to secure more information from the spectrum photo-graphs than had been possible to date, relative to intensity and tempera-ture.

    In order to establish working curves by which the source intensity canbe evaluated in terms of the photographic density that the source produces,the following detailed steps were followed:

    1. Three temperatures) say 22000K, 24000K and 30000 K were chosen as opera-ting temperatures for a tungsten strip lamp. A fourth value, say 26000K,was chosen to provide a check on the results of the following procedure todetermfne flare temperatures.

    2. A computer run was made to obtain values of WA at 0.010 micron inter-vals for these four temperatures, normalized at 0.6150 micron (an arbitrarychoice), from 0.35 to 0.75 micron. It is instructive to plot these valuesof W7 a /615 as in Figure 3. W?, is the power radiated per cm'2in 2 Tsteradians in watts~as it is tabulated in PDTR No. 90.

    3. Films were exposed in the B & L 1.5 meter grating spectrograph througha step-wedge over the slit. The wedge had been calibrated on the Jarrell-Ash microdensitometer and found to have the following characteristics:

    19

    - - - - - - . - .- - - i --

  • TABLE 5

    Smoke Attenuation Coefficients

    - .rPressure, a(x 103) :Path length

    Mix Fuel torr cm"- for I/Io:e'1

    F-16 i Mg 630 1 4.9 202F-16 i mg 70185564 70 1.8 56

    F-30 Al 60- 4.9- 197F-33 Al 630 3.2 _ 333

    F-34 B 70 3.0 331F-35 I B 63b 6.5 '5 1 .

    F-3 I B ... .. ... 70 i. 8, _.!F-36 [ eg 630 5.6 i80F-36 Mg 70 2.2 44.7F-38 Mg 630 7.9 I 127.F -38 .. .mg. .o . .. . ..i. .9 _ . . ..!F-39 It 630 7.0 142F-39 Mg 70 2.7 370F-56- - I 630 I 10.4 - 96F-36 70 8.7 114F-57 MS 630 7,4 i 136

    2_ 136 '_ __ j._ . 70 2.1 . .....2

    20

  • 10000

    101

    I4'

  • Step Wedge Transmission and Density Values

    Fractional SeidelStep No. Transmission, T Density A

    0 1.000 0.000 -2.001 .334 0.476 0.29972 .147 0.833 0.7643 .067 1.174 1.1444 .029 1.538 1.5255 .012 1.921 1.9166 .004 2.398 --7 .002 2.699 --8. -- --

    4. The physical setup of apparatus was held constant while several ex-posures were made with the lamp at each of the four chosen temperatures.One exposure was made at five seconds, one at thirty seconds and one toproduce a density of 0.6 on the fifth wedge step at a wavelength of theorder of 0.5 micron. Five seconds was chosen because that duration occurr-ed in many tests; thirty seconds was used for some tests because of the in-creased burning time experienced at pressures of the order of 40 torr. Re-ciprocity failurp can be partially compensated by using data frola the filmstrip which most nearly matches the exposure duration of the burn. See Plate 55.

    5. These films were measured to obtain the transmission of each step,from 0.35 micron to 0.75 micron, at 0.010 micron intervals.

    6. When the transmission is less than 0.10, accuracy becomes poor. Insuch case, the Jarrell-Ash densitometer can be readjusted to show T = 1.00when a Wratten 96 filter of effective D a 1.00 is in the beam. ihis filteris then removed and readings made of those film areas for which T

  • I

    plotted on the same gra7hwith W,/W.5 0 0. At each the ratio F, ofA nto W/W.500 is the correction factor needed to account for the deviation

    from linearity with respect to wavelength which all film exhibits in itssensitivity. A plot of this ratio vs. 7\was made. It should be the samefor each temperature, i.e., the points from each of the three calibrationtemperatures should fall on this plot, unless values ofA are involvedwhich fall outside the linear range of this function.

    9. Another set of plots could now be constructed in which the abscissalvalues are log (W- ) for G = 28000K and the ordinates are L . The valuesof W% would have to be divided by the appropriate step-wedge transmission,T, when plotting these curves. This would normalize every step to thedirect exposure value of the zero step.

    10. The values of Axfrom the other temperatures, suitably corrected forthe step wedge T and with values of WX appropriate to the respective tem-

    peratures may be plotted as in 9. Again, unless the linear range of theA -function is exceeded, these points should "fit". It is now possibleto relate the transmission of the film at any wavelength to the relativeexposure which caused the film density, and thence to the relative in-tensity of the source. From these values, a value for the source tempera-.ure may be obtained by various methods. If it is assumed that thesource is a grey-body, the ratio of the "intensities" at two wavelengthscan be used to define a temperature. If atomic line radiation which isnot affected too greatly by absorption in the flame can be found in thespectrum, an excitation temperature can be defined by well-known relation-ships when transition probabilities and statistical weights are known forthese lines. If several lines are available, an atomic Boltzmann plotcan be used, the slope defining the temperature.

    Some of the points in the preceding comments are emphasized for great-er clarity in the following paragraphs.

    11. A great deal of work has been done on the radiant emittance of thestrip filament lamps mentioned above in 1. (1-5) A General Electric SR8filament, 18A/TlO/1 lamp is used; the temperature of the filament is deter-mined with a Leeds and Northrop Optical Pyrometer, operating at an effec-tive wavelength of 0.655 micron (6). For this wavelength, the emissivityof tungsten is given by DeVos as 0.43 in the temperature range of interest;i.e., 22000 - 2800°K. The variation with temperature is from 0.438 to0.426, which is within the limits established by other experimental errors.A further correction is made to account, somewhat empirically, for the re-

    flection losses due to passage of the radiation through the glass lampbulb. A loss of eight percent is assumed, and the effective emissivity

    7is thus taken as 0.40.

    12. Operating temperatures for the strip lamp are chosen to give four con-venient points for calibration and check. Correction of the desired tothe observed temperature is made with the aid of tables (7). For true tem-peratures of 30000K, 2400K and 22000K the temperatures observed with theoptical pyrometer are 2402oC, 19120C, and 1742oC. An error of the order

    23f

  • of + 5°C is expected in setting these desired temperatures.

    13. Because it was known + t the flare compositions to be studied might.urn for times so short as to make exposures longer than live secondsdifficult to achieve, this exposure durati;. was used as a basis. Changeswere made when required to produce useful records from low-intensitysources; e.g. flares burning at low pressures.

    14. Film is subject to reciprocity effects which must be considered whencalibration exposures differ from test exposures. The film chosen forthis work is Eastman Kodak Linagraph Shellburst, clear backing. Datafrom (8) was replotted to obtain a curve of the exposure required to pro-duce a density of 0.3 above fog for development in D-19. This curve, fortimes from 0.1 to 100 seconds, is almost linear and is of the form

    log It = 0.303 log t -2.06

    when I is in meter-candle seconds and t is in seconds. A change from t - 1sec to t = 10 sec is seen to require a corresponding change in exposure ofapproximately 2X, for the same density to be obtained from a source one-tenth as intense.

    15. it is customary to plot the film response in terms of (density) versus(log expos, re). The result is an S-shaped curve from which values nearlow or hitr densities cannot be easily and accurately related to the ex-posure. In order to improve the reading of values of exposure from lowand high density regions of the calibration curve, the Seidel functionhas been used (9). This function replaces density, D, with log ( -1)where T is the transmission or transparency. T is the result of the 1,sualmicrophotometer reading, which usually must be converted to density bythe relations D = log 0 = log -- *- log T.= - log I_-. I is the trans-mitted, I the incident intensi y of radiation in theT icrophotometer.D-log E curves are usually approximately linear from D x 0.4 to D a 1.8,whereas the Seidel plot is linear from about D - 0.1 to D a 2.1.

    16. Response of the film is required at each wavelength of interest be-cause of the variation of its characteristics with wavelength. Bothsensitivity and gamma vary with wavelength of the exposing radiation. Therequired data are obtained by the combination of step wedge transmissionfactors and the known spectral distribution of the strip lamp at varioustemperatures, which determine the exposure, and the readings of densityfrom the microphotometer.

    17. It should be noted Lhat the original choice of a normalizing wave-

    length at 0.615 micron was poor because few readings could be obtainedfrom the film at this point. It was therefore necessary to change thenormalizing wavelength to 0.500 micron. See paragraph 2, and Figure 3.

    24

    r9

  • The material that has evolved in the process of applying theapproach to temperature measurement just described above is illustratedand amplified in Plates 56-62. It was found to be almost a necessityto develop the conversion chart in Plate 56 to expedite the measure-ment of the negatives. A change of the switch position which controlsthe sensitivity of the Jarrell-Ash Densitometer was found to be a morerapid and a reproducible means of reading high density portions of anegative, replacing the method initially used and described in para-graph number 6. With the switch positioned at 8, a reading of 15obtained with a switch setting of 7 becomes a reading of 37.5, etc.The emissivity of tungsten as determined by DeVos has been used inthese calculations. His summary plot of emissivity vs. temperatureis therefore given in Plate 57. The computer program which was devel-oped to calculate the various energy and delta values is shown inPlate 58. The output from this program for data obtained from a nega-tive exposed to a strip lamp is shown in Plates 59-61. The lamptemperature was determined to be 24000C, or 26730K apparent. Correc-tion for emissivity and losses in the lamp envelope produces a truetemperature of 30000K. Similarly, the lower temperature was measuredas 20770C and corrected to 26030K, true. Plates 59 and 61 contain theentire results of the computation program in Plate 58; Plate 60 shows

    4 the summary only of the data needed LO plot the film response vs.expnsure. A plot of this data from the 30080K source negayive ispresented in Plate 62 It is easy to verify by plotting joints fromthe 26030K data that further work is needed to find the source of thediscrepancy in the results. Although the points from either tempera-

    ture source should, for a given wavelength, fall on the same line,they do not. The error probably lies in the energy values used tocalculate (log intensity) as determined from the source temperatureand step wedge transmission. It appears from the linearity of theplotted data that the method should be usable if this problem can beovercome.

    Tie variation seen in the slope of' the Seidel vs. log intensitylineswith wavelengthis not unexpected. A variation in film gammawith wavelength, which this represents, has long been known.

    Recordings of the spectral distribution of the radiation as seenthrough the fore-nptics of Plate 65 by the scanning monochromator arereproduced in Plates 12-54. So far as possible, these plates havebeen chosen to match the spectra in Plates 1-11; however, when experi-

    mental difficulties produced good data from only one instrument duringa test, the data from two different burns have been used in the plates.The records have not been corrected for the system response; a correc-tion curve is given in Plate 68 that was derived from the records shownin P'ates 66 and 67. The relation between the abscissal location onthe record and the wavelength of the radiation is shown in Plate 64.

    25

    I

  • Results of the data on dominant wavelength and purity that wereobtained with the colorimeter have been plotted on C.I.E. chromaticitydiagrams in Plates Y0 - 81. Correction of the tabulated values whichwere plotted in these plates may be desirable in the extreme red andblue regions; it was felt that for most purposes the data were accept-able as they are. Corrections can be obtained from Plate 69.

    The presence of a non-consumable case results in the creation ofa motor effect during the later stages of combustion and is believedto produce some changes in the character of the visible (as well asthe concealed portion) flame. These changes have not been studiedbut an effort has been made in the current study to minimize theireffects. This has been attempted by endeavoring to obtain the time-resolved data during the early part of the burn, but after it is wellestablished. This is not possible in many cases.

    26

    . . . . . . . . . . . . . . . . . . 1

  • LIIV. DISCUSSION AND CONCLUSIONSA considerably larger than normal amount of raw data has been

    F included in this report. This has been done in order to make the

    results of this study available to interested persons as rapidlyas possible. It also serves to preserve the material until such timeas it becomes possible to analyze its content to a greater extent than

    has proved possible at this time.

    It is believed that an extension of the spectral data, to includethose compositions which were listed in the F-forty group and a fewothers, should be made. With this exception, it appears that spectral

    *data from the flames of small flares have been obtained for represen-tative mixtures of those materials which are of general interest.However, this represents, essentially, a survey of the field ratherthan an exhaustive study of it. In particular, the changes in thespecies that are in these flames which must occur with changes in thedistance from the burning surface have not been investigateS.

    The same comment also applies to the changes in color, luminosityand temperature. Furthermore, results which have been obtained todtte apply to quite small flares; e.g., 1/2" diameter, and to flares

    * burning in cases which have a strong chimney or motor-action influenceon the combustion process. Differences of significance may be expected

    * in the parameters mentioned when they are measured on large flares,or on flares which consume the covering as tney burn. Some furtherstudy should be made (with this same set of apparatus, to eliminateas many unwanted sources of difference as possible) of selected com-positions to establish the magnitude of such differences.

    Efforts are finally being made to reconcile the results producedby thermochemical, computer calculations of the kind long-used in therocket motor developments with the performance of flare compositions. (25)Determinations of the optical density and absorption characteristicsof flare flames will be needed to back up these calculations. Therole played by metallic fuels should be more fully investigated, par-ticularly with regard to their influence on the reaction rate and theamount and source of continuum radiation. That is, the role of MgOor MgOH in Mg-fueled flares is of interest. By comparing the spectraldistributions produced by, say, Mg-NaCI04 and CH 3OH-NaClO4, some databearing on the relative importance and amount of radiation from MgOcan be obtained.

    The measurement of temperature by the meLhod of spectral intensityratios, etc. has been disappointingly difficult to implement. A strongereffort was made to accomplish this task in this study than had beenmade previously and it is believed that the expenditure of a reasonableadditional effcrt - two man months - should bring it to a successfulconclusion. This would provide a valuable tool in future studies ofthe temperature distribution in "dirty" or opaque flames. It can beused also in studies designed to provide the high temperature

    427

    F .-

  • thermochemical data which is needed in the computer calculations of

    flame temperature and reaction product concentrations.

    Because the radiation from the flare may contain not only theline and band radiation of atomic and molecular species, but also theradiation of particles of, say, MIO, some thought should be given tothe manner in which this latter radiation occurs. The radiation frommassive pieces of hot MgO - say,, below 28000K to 30000K - should liemainly in the long-wave spectrum beyond 7 microns, since it is trans-parent in the region from 0.3 micron to 7.0 micron or more, andconsequently would not be expected to act asa good radiator. However,the combustion of magnesium with oxygen produces an intense light withan excess of short-wave (blue) radiation. In this example it appearsprobable that the major radiating species is MgO, although possibly anitride or hydroxide could be formed. If MgO is indeed the majorspecies and responsible for the majority of visible radiation from thecombustion of magnesium in air, an apparent anomaly exists which shouldbe investigated. The fact that magnesium is the fuel used in mostilluminating flare compositions makes this question interesting, be-cause of its application to the description of the radiative processeswhich occur in these flames. Eventually the information would be usefulin the creation of a theoretical, computational model of flare perfor-mance.

    The color and purity of the light produced by the B-Ba(ClO 4 )was neither as green nor as pure as had been hoped for. None of tfecompositions burned produced radiation of' particularly high colorpurity or intensity. The most nearly colorless, in the sense thatlow purity of color indicates a high percentage of "white", was F-36.This mix contains Mg-KCIO4 and is quite low in its candela rating; itwould not appear to be especially useful, even though essentiallycolorless. Caution must be used to avoid confusing Mix 3 with F-3.F-3 is a 4o/6o Mg-NaNO3 compocition, whereas Mix 3 is 25/65/10 Mg-Ba(N0 3 )2-PVC and is carried over from earlier work.

    The effects of smoke produced by the combustion of these mixes onthe color and purity of the light seem to indicate that smoke has notseriously affected these measurements. Earlier work was done in a muchsmaller chamber; the smoke concentration would be higher, and greatereffects might have been produced under those conditions. It is inter-esting to note the apparent increase in purity that is recorded inTable 4, amounting to about 20 percent. Whether this represents a sortof Christiansen filter effect, or perhaps a scattering of some blueout of the measured radiation, is a matter for speculation.

    28

  • I

    BIBLIOGRAPHY

    1. Larrabee, Robert Dean, "The Spectral Emissivity and Optical Pro-perties of Tungsten," May, 1957, Research Laboratory of Electron-ics, M.I.T. AD 156602

    2. DeVos, J. C., "A New Determination of the Emissivity of TungstenRibbon," Physics 20, 669; 690; 715 (1954).

    3. Forsythe, W. E. and E. Q. Adams, Jnl. Optical Society of America,35lO8 (1945).

    It. Barnes, B. T. and W. E. Forsythe, "Spectral Radiant Intensitiesof Some Tungsten Filament Incandescent Lamps," J. Optical Soc-iety of America, 26, 313 (1936).

    5. Leighton, Leroy G., "Characteristics of Ribbon Filament Lamps,"Illum. Engrg., LVII, 121, (1962).

    6. Dike, P. H., W. T. Gray, and F. K. Schroyer, "Optical Pyrometry,"Leeds and Northrop Tech. Pub!. A 1.4000/1966.

    7. N. B. S., Monograph 30, 1961, "Corrected Optical Pyrometer Read-ings," Superintendent of Documents.

    8. Eastman Kodak Co., "Tech Bits," 1964, No. 3.

    9. Ahrens, L. H. and S. R. Taylor, "Spectrochemical Analysis,"pP. 139-154, Addison Wesley Pub. Co., 1961.

    10. Wright, W. D., "The Measurement of Color," pg. 169, Van Nostrand,1964.

    11. Cordihgley, D. C., et al., "Extended Tables of Seidel Function forSpectrographers," App. Spec., 8, 92, 1954.

    12. Blunt, R. M., "Prcduction of Colored Flames With Air & Water Re-active Materials," RDTR No. 20, U. S. Naval Ammunition Depot,Crane, Indiana, 47522, 30 June 1966.

    13. Blunt, R. M., "Processes Occurring In Pyrotechnic Flamec," RDTRNo. 35, U. S. Naval Ammunition Depot, Crane, Indiana, 47522,April, 1966.

    14. Blunt, R. M., "Evaluation of Processes Occurring in PyrotechnicFlames," RDTR No. 91, U. S. Naval Ammunition Depot, Crane,Indiana, 47522, 15 March 1967.

    29

  • BIBLIOGRAPHY (Continued)

    15. Ellern, Herbert, "Modern Pyrotechnics," Chemical Publishing Co.,

    Inc., 212 5th Ave., N. Y., 1961.

    16. Fordham, S., "High Explosives & Propellants," Pergamon Press,N. Y., 1966.

    17. Poster, Arnold R., ed., 'Handbook of Metal Powders," ReinholdPublishing Corp., N. Y., 1966.

    18. Pollard, Frank B., Jack H. Arnold Jr.; editors, "AerospaceOrdnance Handbook," Prentice Hall, Englewood Cliffs, N. J.,1966.

    19. Gaydcn, A. G., H. G. Wolfhard, "Flames," Chapman & Hall, Ltd.,London, 1960.

    20. Gaydon, A. G., "The Spectroscopy of Flames," Chapman and Hall,Ltd., London, 1957.

    21. Mavrodineanu, Radu; Henri Boiteux, "Flame Spectroscopy," JohnWiley & Sons, Inc., N. Y., 1965.

    22. Murray, H. D., ed., "Color in Theory & Practice," Chapman &Hall, Ltd., London, 1952.

    23. Shidlovsky, A. A., "Fundamentals of Pyrotechnics," Tech. Memo.1615. Picatinny Arsenal, Dover, N. J., AD462h74

    24. Engineering Design Handbook, Military Pyrotechnics Series, PartsOne, Two, Three; Headquarters, U. S. Army Material Command;AMP 706-185, April, 1967.

    25. Hamrick, Jos. T., et al., "Exploratory Development of Illum-

    inating Flares," Aerospace Research Corp., 5454 Jae Valley Rd.,Roanoke, Va. 24014, on Contract No. F08635-67-C-0161, Illumina-tion Branch, Targets & Missiles Division, Eglin Air Force Base,

    Fla. August 1967 - April 1968.

    30

  • The following list of wavelengths identifies the materials of Plate 1through Plate 11.

    LIST OF TYPICAL SPECIES VS. WAVELENGTH*

    SpeciesApproximate Wavelengths, Lines . Band Edges,

    Elemental Molecular Relative Intensities and Direction____________ Band De orad%s,_y.qIjd. R An. stroms

    1 Mg 5184/500, 5173/2005167/100, 3838/300, 3832/2503829/100

    Sr 7070/10006893/100, 6878/500, 6791/2006644/1oo, 6617/150, 6550/105481/00o, 4876/200, 4607/1000

    Ba I 17060/2000, 4554/1000_________

    3501/1000Li 6708/3000,4603/00, 4273/200

    4132/400, 3986/100Na 6161/6154//500, 5896/5000

    5890/9000, 5688/300, 5676/1505670/100, 5154/600, 5149/400,S4983/200/4669/200

    K 6939/500, 6911/300, 4047/4004o44/8oo, 3448/lOO, 3447/150

    MgF 3685 VMgC1 3775 V

    Y19O 3816-9-R; 4974-7(-v; 4986-8-V;4997-9-V; 5007-10-V; 5286-3-V;

    .. . 5519-4-V; 5776-5-v

    BaC1 5066-1-V; 5136-10-R;5139-3.0-V; 5167-2-R;5213-1-V; 5241-10-R;5371-3-V

    BaO 4851-6-R; 4965-3-R;5087-6-R; 5215-7-R;5350-8-R; 5493-10-R;5644-9-R; 5701-8-R;5805-6-R; 5865-10-R;6040-9-R; 6165-6-R;

    . 6291-8-RSrCl 6756-3-V; 6745-5-V;

    6620-5-V; 6614-i0-V;6483-4-V; 6362-5-V;

    i _ _ _6359-I0-v; 6239-2-V;SrOH 6110-1-V; 6101-3-V; 6096-4-V;

    6o9o-6-v; 6o85-10-v; 6077-8- v

    *Aa index bar appears at the top or right end of each spectrum, whichis at approximately 3400 A*.

    PIGE 31

  • PLATE 1

    Data Binder Pressure Exposed

    Zone Run Mix- Metal % Oxidant c PVC % Torr Secs

    1:1 4 1 Mg 35 NaNO3 65 0 630 8.7

    i" 6 3 Mg 0to NaNO 3 60 0 630 7.3

    i" 8 4 Mg 4o NaNO3 30 30(TFE) 630 20.0

    i" 22 8 Mg 60 NaNO3 40 0 630 less

    than 3

  • -4

    4 44I

    I

    I II I

  • PLATE 2

    Date Binder Pressure ExposedZone Run Mix Metal " Oxidant % PVC % Torr Secs

    i" 33 16 Mg 51 Ba(N0 3 )2 37 5(TFE) 630 5& Sr(N03 )2 7

    1" 35 16 300 5

    i" 38 16 150 11

    i" 39 16 70 21

    See P'ates 19 and 20

  • 04L-

    > in

  • PIATE 3a

    Data Binder Pressure Exposed

    Zone Run Mix Metal Oxidant PVC , Torr Secs

    1" 44 F-30 Al 35 NaCl0 4 60 5 630 50

    l" 20 F-31 Al 32 KC104 63 5 630 78

    PIATE 3b

    Data Binder Pressure Eyposed

    Zone Run Mix Metal 9 Oxidant % PVC % Torr Secs

    i" 17 F-33 Al 37 Sr(Cl04)2 58 5 630 42

    i" 120 F-33 Al 37 Sr(ClO4)2 58 5 300 62

    See Plates 24 and 25

  • 71

    If

    V

    A

    I 'N

    1'

    I

  • PLATE 4

    Data Binder Pressure ExposedZone Run Mix Metal % Oxidant % PVC % Torr Secs7" 106 F-34 Boron 37 Ba(Cl04)2 58 5 630 7.2

    l" 82 F-34 Boron 37 Ba(Cl04 )2 58 5 630 5.7

    l" 8h F-34 Boron 37 Ba(C10 4 )2 58 5 300 8.1

    l" 85 F-3h Boron 37 Ba(ClO4)2 58 5 1]50 11.2

    See Plates 28, 29, and 30

    - - ---- -- - ------ - - -

  • 5- 1- I -

    .5 I

    *1

    4'

    'S

    '4

  • ELATE 5

    Date Binder Pressure ExposedZone Run Mix Metal Oxidant o PVC Torr Secs

    i" 80 F-35 Boron 27 KC1Oh 68 5 630 4.3

    l" 74 F-35 Boron 27 KC1O4 68 5 300 5.5

    1" 79 F-35 Boron 27 KC104 68 5 150 7.4

    See Plates 32, 33, and 34

  • 4-

    I

    4.

    4.

    4.

    - IC

    4 4

    4-,

    i

    'I

    4 -

  • PLATE 6

    Data Binder Pressure ExposedZone Run Mix Metal c6 Oxidant PVC % Torr Secs

    il 60 F-36 Mg 37 KC104 58 5 630 19

    1" 62 F-36 Mg 37 KC1O4 58 5 300 24

    i" 65 F-36 Mg 37 KClO4 58 5 150 50

    i" 68 F-36 Mg 37 KC1O4 58 5 70 68

    See Plates 38 and 39

  • .4-

    4S

    M3H

    M9

  • PLATE 7

    Data Binder Pressure Exposed

    Zone Run Mix Metal Oxidant 7 PVC * Torr Secs

    i" 100 F-38 Mg 37 IiClo4 58 5 630 49

    1.5" 114 F-38 Mg 37 LiC10 4 58 5 630 50

    2" 108 F-38 Ma 37 LiC1O4 58 5 630 51

    See Plate 40

  • ii

    -~ *1

    I p.

    I * A

    t F

    U

    I-.

    ~1

    4

    C

    -a

  • PLATE 8

    Data Binder Pressure ExposedZone Run Mix Metal % Oxidant % PVC % Torr Secs2" 107 F-38 Mg 37 LiClO4 58 5 630 481.5" 110 F-38 Mg 37 LiC104 58 5 300 70

    1.5" 112 F-38 Mg 37 1C1004 58 5 150 66

  • IC

  • PLATE 9

    Data Binder Pressure ExposedZone Run Mix Metal ' Oxidant % PVC % Torr Secs

    1" 92 F-39 Mg 37 NaC104 58 5 630 18

    1" 93 F-39 11g 37 NaC1O4 58 5 300 29

    i" 95 F-39 Ig 37 NaC1l04 58 5 150 321" 97 F-39 Mg 37 NaC1O4 58 5 70 42

    See Plates 43 thru 46

    .. . .

  • I

    S.

    p

    1:

    4

    I.

  • PLATE 10

    Data Binder Pressure ExposedZone Run Mix Metal % Oxidant % PVC Torr Secs

    1.5" 124 F-56 Mg 58 LiClO4 37 5 630 27

    1.5" 126 F-56 Mg 58 LiC1O4 37 5 300 36

    1.5" 129 F-56 Mg 58 LiClO4 37 5 150 74

    1.5" 131 F-56 Mg 58 LiCl04 37 5 70 76

    See Plates 48 and 50

  • -~

    * . .9

    * .1

    E -

  • PLATE 11

    Data Binder Pressure ExposedZone Run Mix Metal % Oxidant PIC % Torr Secs

    1.5" 132 F-57 Mg 58 NaCIO4 37 5 630 12

    1.5" 136 F-57 Mg 58 NaClO4 37 5 300 16

    1.5" 139 F-57 Mg 58 NaClO4 37 5 150 291.5" 141 F-57 Mg 58 NaClO4 37 5 70 39

    See Plates 52 and 54

  • -M 0

    ft~

    p -'o

    - INA

  • PLATE NOS. 12-54

    Flame Spectra from the Scanning Spectrometer*

    Plate Run Mix Pressure, Slit, PAR Zone,No. No. No. torr mm atten. inches

    12 48a --- 630 0.04 0.00113 57w --- 630 0.30 0.002 -14 56 3 630 0.05 0.001 115 13b 4 630 0.05 0.001 116 57 7 630 0.05 0.001 117 32 16 630 0.05 0.001 118 36 16 300 0.05 0.001 119 38 16 150 0.05 0.001 120 39 16 75 0.06 0.001 i21 45a 30 630 O.1O 0.001 122 45b 30 630 0.06 0.001 123 16 31 630 0.50 0.001 124 117a 33 630 0.40 0.001 125 117b 33 630 oALO 0.001 126 119a 33 300 0.20 0.001 127 101 34 630 0.10 0.002 128 106 34 630 0.15 0.001 729 84 34 300 0.18 0.001 130 85 34 150 0.20 0.001 131 87 34 70 0.25 0.001 132 80 35 630 0.045 0.001 133 71, 35 300 0.05 0.001 134 79 35 150 0.15 0.010 135 77 35 11'o 0.15 0.05 136 61 36 630 0.03 0.001 1

    37 64 '36 300 0.06 0.002 138 65 36 150 0.07 0.05 139 68 36 70 0.o85 0.01 140 114a 38 630 0.075 0.001 141 109b 38 300 0.075 0.001 142 113b 38 150 0.125 0.01 1.543 92a 39 630 0.035 0.001 144 93a 39 300 04 0.001 145 95a 39 150 o.045 0.001 1

    *Flint Glass Prism, Settings C.F. 19, N.M. 1.5.Type 6217 Photomultiplier DetectorC.R.0. Tektronix Type 536/H Preamp Gain, lv/div.Sweep Rate at 3 scans/second.

  • PIATE NOS. 12-54 (Cont'd)

    Plate Run Mix Pressure, Slit, PAR Zone,

    No. No. No. torr Im atten. inches

    46 97a 39 70 0.05 0.001 1

    47 123a 56 630 0.07 0.001 1.5

    48 126a 56 300 0.075 0.001 1.5

    49 128b 56 150 0.08 0.02 1.5

    50 131b 56 70 0.125 0.05 1.5

    51. 133b 57 630 0.05 0.001 1.5

    52 136a 57 300 0.045 0.001 1.5

    53 134 57 150 0.02 0.001 1.5

    54 141b 57 70 0.07 0.02 1.5

  • _____ Plate liel 1' _____ _____ ____

    -! -- jm ~

    r--

    ---- --__

    t I l I I I I I , I J i ll _ I J i l IfI i l lI I I I I

    IIELIUM! NEON G'AS LASER

    PLATE NO. 12 630 TORR

    Plate l'e 1I1 -

    AC MERCJRY ARC LAMP

    PLATE NO. 13 630 TORR - !I + I -I -4-fI+ -H-f-f- -1---I -

    dO _ _,-1 -. "--M "2',m .A

    U-

    -i

    I.

  • - lPlate .114

    MAGN~ESIUM4 40%SODIUM NITRATE60% 0

    !PLATE NO. 14 630 TORR

    _ ----

    Plate Nc. 15 -

    MWES IUIM 40%BARIUM NITRATE 30%

    TEFLON 301PLATE No. 15 630 TORR

    ..... L

  • Plate Tic IV

    MAGN4ESIUM~ 40%

    BARIUM NITRATE 65%TEFLON 10%

    PLATE NO. 16 630 TORR

    Platt- N~o, 17

    MGNESIUMb 51% -BARIUM NITRATE 371•-

    STRONT'IUM NITRATE 7%,-TEFLON St '

    PLATE NO. 17 630 'I1ORR

    o_. --

  • MAGNESIU 51% r .iBARIUM NITRATE 37%

    STRONTIUM NITRk'rE 7% -& 'AA-Ii ALJ

    PLAT O. 18 301-..R

    MAGNESIUM 51%

    BARIUM NITRATE 37%STRONTIUM NIRATI 7 1 1 I I I

    TEFLON 5% .4+A

    PLTE NO. 18, ,, ,TORR

    --

  • - - - -

    MAGNESIUM? 51%BARIUM NITRATE 37%

    S' RONTIUM NITRATI" 7% + " t"H- tTEFLON 5%

    PLATE NO. 20 75 'ORR

    -- - - - -

    ilate Uol ,1

    ALUMINUM 35%

    SODIUM PERCIIORATE 60%, POLYVINYLCHLORIDE so- ++++ 4*t-++ +++I -

    PLATE NO. 21 630 TORR

    L

  • Plate 2-2

    -I I I I It a I I I I - I

    111 111cl ol k i ll Q II II VI I I II f l

    ALUMINUM 35%SODIUM PERCIILORATI" 60% - a

    POLYVINYLCI!LORIDI" 5%

    PLATE NO. 22 630 TORR

    P E . a 6 a

    I -p a

    1t

    ALUJMINUM 32%POTASSIUM PlRCiIIIRA'rL 63%,

    ______ 'Tt _ I ,, POLYVINYICIILORItDE 5%

    PIATBi NO. 23 630 TOIR

    - - --

    '2 j_- ---

    I

  • Plate flo. 2) _ _ _ _

    ALUMINUM 37%STRONTIUM PERCHILORATE 58%

    POLYVINYLI.CLORrn: 5%

    PLATE NO. 24 630 TORR

    AIMJNINUM 371,STRONTIUM PERCHILORATE %

    POIYVINYI.CILlORTIDII 5%

    PILATE NO. 25 630 TORR + +4fH 4- t + +

  • K -m

    Plate NIo 26 -

    ALUMINUM 37%STRONTIUM PERCIILORATE 58%

    POLYVINYLCIILORIDL 5%-_ _.

    PLATE NO. 26 300 "IORR

    --

    4_.

    I RBORON 37%I, ~BARIUM PF.RCIII.ORATE 58% - - -

    POLYVINYI.CIILI.Ol 5%

    P.A'TL NO. 27 630 "rOHRl

  • ae- 1- - - -I rBORON 37% "

    BARIUM PERCHLORATE 58%POLYVINYI.CIII.ORIDI: 5%

    PLATE NO. 28 630 TORR

    101

    III

    bi

    Plt m -,

    - I -f - -l -il

    BORON 37%BARIUM PERCHLORATE 58%

    SOI.YVINYICIILORIDI: 54

    PLATE NO. 29 300 IORR

  • 1 --

    BORON 37,

    BARIUM PERCIILORATE S8?o

    POLYVINYLCIILORIA: 51-

    PLATE NO. 31 70 TORR

    I

  • 4 -m

    Plate N1.

    £LoLo4LL ,JJ, "'iL +H+++++4++-BORON 27% +II..

    POTASSIUM PERCHLOWNTE 68%POLYVINY.CIILORID" 5%

    PLATE NO. 32 630 TORR ---

    _____ plate ~ld ___________

    Jill] fl l i im .

    BORON 27%

    POTASSIUM PlIRCILORATE: 68%__________POLYVINYl'CIII.ORII)Ti %

    PLATE~ NO. 33 300 'rIRR

    Aj"

    Nor J,

    2--

    ______________ A

    II

  • ITO

    _ -- - ---- _

    __ __ Patc No . _ _

    BORON 27%*POTASSIUM PERCHL[ORATE 680v

    POLYVINYLCI[LORIDE So.

    PLATE. NO. 34 ISO TORR * l AAi-! I! +!-

    -- - _

    K ,. ORON 27%POTASSIUTM PERCHLORAT 8e

    POLYVINYLCIILORIDL' 5%

    PLN- No. ;s 70 TORR

  • POTASSIUM PERCIILORATE 58%POLYVI14YLCIILORIDI: S%

    PLATE NO. 36 630 TORR

    NIAGNI.SII 37%POTASSITUM rERC:HIIORA'rli 38%

    POLYVINYi.IILOR IDE 5*0

    PLATEi No. 37 300 IXnRR + H + +4--+ 4+ +I+

  • PlateH. 8 1"----

    MAGNESIUM 37%POTASSIUM PERCILI.ORATE 58%

    POLYVINYLCIILORIDE 5 %

    PLATE NO. 38 ISO IORR

    I - - m ~ - - -Pla'te [.jl" ,

    II -I - - -MAGNESIU 37%

    POTASSIUM PERCIILORATE 58%:1 IOLYVINY1CIIIORIDW. 5%- - -9

    _--

    -"

  • S_ -_ _ __ _ _ -

    I tI

    MAGNESIUJM 3716LITHIUM PRCHLORATE 589 ,

    I 'OLYVINYLCIII.ORTDE 5%

    PLATE NO. 40 630 TORR

    DI

    MAGNL;StUM 37%eLITIIUM PIRCIORATE 58%

    POLYVINYLCIILORIIE 5%

    PLATE NO. 41 300 TORI-

    _ _ _ _- _

    i --

  • Plate N . )12

    I II1 ||| I I I I~ ~I U l II l i iII I I I I

    - - - -- - -MAGNESIIJM 37-

    LITHIUM PERClHLORATE 58%POIYVINYLCIILORII)I S%

    PLATE NO. 42 i50 TORR

    . . 6

    a__PAI --I _ _be :' _.. _ __

    - LJ tJJ J .. L..L .. L J WLLL J J !r LiJ I'll ii~ JJ! iI I 'II I ' I i t I ) Ii l f | Ii .| I .- I i 1I I *I

    MAGNESIUM 37%

    _______ IPOLYVTN.YLCIILORIm 5% ______

    PIAT O.4 630TOR

  • Plate V .4

    I IfI I I 1 I I I

    - - - I - -- II

    MAGNESIUM 37%SODIUM PERCIILORATE 58%POLYVINYLCHLORIDE 5%

    PLATE NO. 44 300 TORR

    Plate N9. _15 1 --

    MAGNESIUM 37%SODIUM PERCILORATE 58%POLYVINYLCIILOR IDE 5%--

    PLATE NO. 45 150 TORR

    niiI

  • MiAGNESIUM 37%SODIUM PERCHILORATE S8% 'POLYVINYLCIILORIDE 5%

    -7-

    LIHIM PEC""XE 7

    * ir

    I I

    t}Jiii I1Ii iIl JI I ±'' I il I J Ii IiII IJ I

    r I MAGN LS IU N 5%LO IUMPRIIJ (LORArE ___________

    POLYVINLCIILORI DL So

    PLATE NO. 4 630 ORR

  • Plt I

    LI MAGNESIUJM 584#

    POLYVINYLCIILOR IDE S%

    PLATENO. 4 300TORR

    4-

    MA(CNfiSI(JM 58%

    LITIUM PERClILOR~n. 37,1 ~POLYVINYL(:ILORIDE S% . A t:--1

    PL.ATE NO. 49 150 TORR

    -- --- -

  • fA

    A i

    Plate io: 50 1

    MAGNESIUM 58%,... L LIT IUM PERCIILCRATJE 37%-

    POLYVINYLCIILORIDE S% IF"

    PLATE NO.' S0 70 TORRI I7

    _________ i ________ _______

    PL T O 1 630 TOI'R __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ -

    I _ _

  • ,4_ __ _ _ _ _ _ _ _

    - _ __I _ _ _ __

    .L ...SOD...P....LO.T_ 31

    dPlate No. 5'

    I,.

    I I

    [" f~AGNESIUIM 58%

    1 i I

    .L. SODIUM PERCHILORATE 37%

    POI.YVINYLCILO.I-. s ,-4

    I PLATE N'O. 52 300 TORR

    _ .I . _I_ ... .

    41!

    I I

    MAGNESI1DM 58*L.LL.LJ LLLL.L...LLSODIUM PRIILORATP 37IPOI.UVINYLC!II,0RIVE 50%

    PLATE NO. 53 150 TORRMM____, _L. : t L.

  • LA0

    mm -3 _

    C66

    P4

    I ' mom

  • Plate 55

    Fore Optics used withBausch and J-omfb Snect rorrapil

    /ai.u,-b P, L.omb

    fBaus,-h er L-mbNntrance Slit

    .2 Apertuvre

    3.diameter ;!Jasss lens

    -- Sli t clotermini ri viewed area

    l0>~ -< ~ "diameter Iolc~rlns

    Al -first surface mirror

    , ~ ort. Ift h j ' It itudce (Illambe ruisei'til di amet.er 9inolcie-

    110"1

    - -4 Source location in~ Chambei'

    ' Plan View

  • 100

    Plate 56,/"

    90

    80

    70,

    0,.3

    5o

    ,io

    20) .. / RSrON f#7,.

    . .. /. ~ ~C LOC&IVIS- ON ' PL-W/

    T ransmission, N

    60

    5 0 .5 20 19" ho h3')

    :_z -L. - -.-

  • DeVos, J. C., "A Niew Determination of theEmissivity of' Tungsten Ribbon", Physica,Vol. XX, 690-71J", 19511.

    0 ~4 0a 0C.

    ...............

    ............................ .........~. ~ f

    _ _ _ _ _ _ _ _. ... ... t 4.;,

    - II 1 C,. . ... .. . . .

    ....... ... .... .1

    ..... ...... . . . . . .. K 1 71 =7 . ...d .. ...

    . . . . . . . . . . . . . .. . . . . . -......-..

    ... .. .. ..... ....... ....... . . . .

    :::;::~ :::::.2:L . . .. . .......

    . . . . .. . . ........... ...

    I ~ ~ ~ ~ ~ ~ ~ ..... . . .. . . . . . . . . ............ '. 4........................................................................

    1.. ........... .. . ... f.

    t . . ..................................... 3.

    j4 -1 u. 0 . *.. 4

    .3 TL1.:4 *.: .........

  • rI*~. i361101 tN 1I VLRSI I iY UF IENVEH 8 5500 EXILNOE

    Plate 58-

    ii~~~~~sl ~*' 11CLIZ r vi~ I ~LMiSi I I FS FOR VA'RIOUJSL j V I IY ,,1) 1 Elf V I I-ATIJRF Ai~o r u PLOT

    1, UNI II I~ i:~2 J UN * -P i IS

    Ir l. TLI 1, -. I'. FiI.J~~ ' iiOnrkAi.; AL PHA PRIUGRAN; BECIN 04dN B60LLAw

    ;' ~ ,I Ivt lU 1~ 1..% 1, Ci 'I.-IUI I N ( CLiaII '/)PLAY) C//"EXECUTION TIM-

    0 if LU W.t. i I T; ALE'I,A 1,Cs 'I fb:FEtII h.SP YP.9 DAY; LJSLD+ PI!)L Aft) F RUGRAM. *k (1 6 J =w

    6.;;W Y+ T I'F (I~ YI'41 -.Y. I I Y00 'J'~)~; . f.YI ('0 y ]+I1OxlfY . f 36 :6]1+ IOCxIAY*3( t, :b I '" 4tV Y R./I: Ilit 4 =0 1 hLsIO ( 1 1: U .F t."F LIP tI4 "+JAN* "PI* .*

    V1 U;(1*.I1 I~+.41 iI.E( mt+ LO(r.t- DIV 6(,)41INS MUD 60; IF USED THLN1*h~iF(L~tDA~r*i~~k )/6,~i-L()/6.,I(JA'Yy~,HS)LSEWRITE(LIN'E,HJ,w

    P1 1 1 A(/" I'LL ht"4 111 ,F D. 3,pX IJ "1 S T LP NO. X7 OILLT A FUNCTIL-N11p

    LIt L IH; T*,

    FIJI Aq T t. .' I ( 1* 1,L a~ h', Y w 1,II~. 5IL~~X '"i 1 TYpXl,"L " 4

    1TLCa Lk ') 1 Y ' h

    I FiJt)A 1L X(1 /p f I~ L~ L I A NC n I,, V~J Tb AuEFL TO N T L V TsI1 YFt U u U Z1 p 3P J E(t1h. 1 p l Rw E V N )

    OR- I -AT Id - -1 -)11 (i

    F OR , A T ilf~i "114 % V H I I i" # J I r~i -, I L- 1 "., 3 b IS I Y" X4 0 LL T A X 4.

  • i' L tt4 L.; :,ittF,;%j kI. I I 1 1> IFIKJxS'l[ISTEPLIxNLAP[STEP KI ; *

    i. f S f CPF , I LI I tl L I S E L K I ) x O..j4 . ;

    C , .L fi":c' bu ;pj'.( '(21(Et sXTE[ I IJ))-I ,o))'EH'I[I, 3);

    I I lI , . rtL L ,ILPE L j/U *

    I ]F( N r < ,,F , l l l rit. of 1i L.u 1 0 L OIF( SCPrSIrPF,

  • F LA . 1.*

    8EI% . [i *S

    R L ntI.I 01 : C it ,. L .01 *~ ,L0 . A 0 J0 J 5W 2

    . IL EIj Y

  • I~ '6 " -W Y 1 4 a &,'1 a -0-~ ~ ~ ~ ~~~s' 1 91141,111,4' 4.j.*O~4- ~I

    'D .4 in.#' UNl#.4 In cofInCl,

    a . . ;; M

    It 14t : 40 inc m o o -i-

    cy v -!, o ,14

    do 014 4f 4W Zi 61 0( Nim p

    i01000.00000 000 '0000001000 a+e i +32 + +Z. +11 a +, 1 S 3,Sj5 1 a .**+j+ +

    a~ ~ ~ ~ a oss. *! &~a (Ls( s m Va 4a 4W 41 .Its

    W -I 00 I 0 ai W -0~ N t- tn' ON-_ 0 O;Nt- 4ON -PNl

    tnI t faA ' 0 '

    oo -M z~ m

    o- 0.0 0CI o 0 cC0C - 00 COO0000000O0'00a I a# S3 ISIal aII I+ 11333 ii e1 , IIIi2.01 &O ~ )IS a4 It1,1 1

    01 .0 o. :r - ~ ) IOLcoo

    "It

    '0 0

    n n C- ~ 0I cCM, .-10 0 z Ia ..a I- N i.~- .0 0 C, Na C1 tn.a.a.- 0- c4 4~ No,

    0 7 LAS N Lh IT PI r1 1c *NZ =M-c0 r : l y' \- .I-M nOc

    - N 14 :o ~ 'c o 0 ' -A '~'r~ N - rNrja-' N N oCOI'I. . . . . .. . . . . . . . .. . . . . . a* * . j

    .7 Cun a 14 tn' tr Ink nt nt ro not n( n

    .0 ; 0 W, IN a CaI C--

    tn 0 ,oN aoo0 0 :0 > Li U) 0 0000N0.100Ol000 0~~~U)~~ zOt . .~a .-aa,. .- . 4.a CU ' . I) ' . . . .Ca # . .: 3 j I 0 0OcO0O I -c azW4 0 --- i I---

    ~ 001

    01 0 c 14 IO 0'0 0 4 ,r .In 10 O 0 0000CIO 001 0000 .1..

    .~ 'a.x

    ae*

    I.- tn

  • 114 -4 I * AD 401 .4 of~ O.4 . 0 0 4 a 0 04'" .4 .d).4 d .4 04 .4 -0 .4.4.4.. ~ .4 .0,

    4' a a si I I. la eav .s 4r 120 17A & V;11T: a 41111 rr+ f lo + 411, 49 Ol' ID Onto 4 -0 IND t.In0.4 0~ 1* ~ 0 0 .,1

    10 10 000 0W1+ 1' a I ~ 0 +4+++ -* -+++.++ + .?~ 0~jC9 0 . .~V +~ +"4+

    vi,&I 4,W 1 &04 L4,4S4 L&&N

    . qn- y y ;Vr y*

    '2- Of I . * & 4L. I a ftat am e.'f . a -a & 4* 4L JL * I a &, a * L & ft 4k 9.0RS

    ; 44 nmm (S, P (U.N C .-irC r - .- p -o - . - . -- 4,c -1 1 Cy P.. 3 , 6- l W1.. 40'W MMDN 10 %I 000Z00to00 000C 00 0000 010 00. DCC4 Q ?-fln41 flM0 00t

    I- () 0 .4 0 - 0' 0) 0 r, '0 m~ -- 0't 0 m N c J- r ive i tg -4 CONf CM 41 - -

    Li 100 P444

    n if)Na- NI(N . ?"N~IM 4;1; 4; Ilt Le)U'1fLnf'D01'00 W

    -j. . .. . .'i I r I

    .4I

    co 0 IVI0 4rI-. in oi~o p a I- 0 ~ ;;C; In t; 4I 000 0~ co 9C ;flCt C; A i .I 0 .

    0 . C.O.0I00VW4MVV!1N0rIf~~N.4.acmA

    '.4 ~ ~ ~ A' 0.(C.,4,0~I0 AI~?~0fO VOO00'& 1 0% ,100-14on wI : 0Ok ON

    ootoccoo -re LI 0 0

    i~oil

  • 01 'c;." 0At] iW

    e ~ ~ A on .v 0ee . . 1 . Ole on . . 0 i . a

    I c

    + +,+ + al I vI + 2 :+++++++II118+ !

    IL +l & 1 0 6 ag &; 41, Silk a6 ,+ .*. 41- -t-1L 1 .MIM& a M a, am

    40* *

    I' I 1- 1 1 1 1 f2

    I~ I i : +++++ .aZ .ma a *,1,# ... . 1. 11 00OC&OM0aert, Os0.ist%0* 1

    4.- O cutaivLAf, . 0:0 n *oDm40 oc- p0.0'a m V 104*

    'z I #,F'- O e CP in e' OVN a (V N- -- ,- 0:0'o (MI.- 0. ().'-p Of I a

    I- v .- Amc 'o crIN - 0ff- - on0I 0F-o:o u' %'z .z . . . . . . .

    Of4- tMODN4 ,c N4" ' tt

    - .A-------~ORN ' 'A- N N N -~----- ~ -

    m vna v- -N'2'- 0.NC U~O 4- a IS v 4 'o . M In *

    L.I in in4f IT n en v, m, - % o Of . n e,,( -- - - nj N N Of (v 0 in m I

    *I U l IUj~g g g

    [,c toc 2ai oec -0 I , t* O cmm "0;C4-cio : 4t -oc in n6 in. oo , n-o (cvn r n - poomI ris

    ct-- vmm roPo r pe , nL ooc

    '4 0 I - , :, ;L :; '9'. : ;9 1 :CO *Cil041- 1 i f

    It to N 01 INI C. 1,

    tfj~0 -4o 4 NI 0 CI - -CION "0 01 0 0!0 0 0 00 44 0 CI 0 C14, 0 oIi ocoooooooloooiooooooI I T% :01P*P t Il *j i 1 Y c - f - ! f M m 4 q e i

    2.r0.4 0 4~ 1 ~ I 1 1 10 'Ii;0 " . l f0c(~4;, I IMM I 41IC O o o o o e o o o oo o oo oo o o epip 1-P.N'N00 ,.4).3-lPN #).0 )''

    F- a- )4004sf.A '0 t- ! VIa'"': ~NV0 *M -*IC . n 4r a,. .. WD1*0co .Of Im ... P- o . ev m~ A& ino ,m

    dcas mw W Aq00O a,* 0,t ^,nO A0I0 Oto06 4%I 0 ILai1 I;O0 CA Z*1IIII

    'IW -1 all La

    +

  • - *I I I ~OI0020 C0000 1c,0000O000 00~ 000e. s a01 p041, C 40 a~ &1& 0*s si .0 ale, . a e,

    al 0 1 , z

    IY r. % t r a Frl 1 2 49 0 4 I f.01

    A IIf

    a ol In I. - a IN

    wi i ~ mNf -4'9' m~f~ m 0r C IO ntA o~f '0.. N in1 vo NN0 MC 'fn CV4t I

    2 + +v . .* . I 1 :it mll 1 !, . .. T I M .# If e% .4 ,Oe

    * *- 1 IV

    + + 'I 1 .I* Z (0-0' Ct 10.N -0 -0 #.'CC %, 0 000000 CJ ,-0 00 0 0, 0n 00 100 0 10 -

    I- In 0 tn O N - JO i "I')JN1 .4C 0- 1" 0 0 ntM'4D,1 4t 0.3 1N -1

    .; a N , 42 fl 1, '0 - . 1 NNNNj NN4C'9 CY NI~ 1 ' 9 V I I e ' ; ' I $I I

    0- 0 0-v---------------------------------- In - r ID 01 (1 M 40' nip 0In -nZd O 3

    9 -. et: %:oo i: oooooooo o .o .eo... o.o.

    -. I ( '000 0 C a 0 000 000 0,0 0 Ah9N.4 A 0 '0 1-) CIO

    a ~~0 010 C-. 0 -% ~ 1 J ~. I % 00 J .~_j. . ..1 0.

    2A 'C 0 OJO 0 0 0 0 CIO In -0 00100Ie Csg

    ,2 C040,

    9 A5

    Mt00111 x4 f" A1 AirwV a t *4*c .iI Ole ~ 0 ~'01 010.00 P I I- 09.- r. '2 .0 ,0 . &g 0 O 0 t' '09 & 0 ~ - .-4 0 C; 0 a 0. & 411 09'

    '101.14 0. 1, Q*gg g,;/A I 11 3I .~l lt

  • TEPKTR~i2949.GESKLI

    H4 EE.T 0.18 ST.. NU. DEI UCIO.O E _4ES

    WAVELENGTH 0.390 S~IE." NE6 ELIA iUNCIION - LOGi NET INTENSITY

    - 094652

    WAVELENGTH c 0.300 STEP No, OFLIA IUNCI10N LUJG NET iNTNSiTY

    I .to95s -0.8??.

    WAVELLNTH 0.310 STEP NO. OFlLIA FUNCIION LUOG NET INT-ENSITY'4) -0.4319 *0#2526 -

    WAVELENGiTH*£ 0.400 STEP ND,. DELIA jUNCIION LUG NET INTENfiY" 0.124 .001586

    1 "1.9547 -0#62509

    WAVELLNUTH 0,430 STEP No. DELIA FUNCIION I.UG NET INIENSITY0 0431 -0.0526

    1 "0078 06590

    2 ).o9954 000

    iWAVELENGTH 0.440 SILE NO, DELIA FUNCION LUG NET INTENSITY0 042499 0.0101

    1 ~"0*658S .*T

  • (N

    7 , .

    WVILLENGTH • 0.450 srEP NO. OEIT' UNCIZON. LbG'NEt.jitENSITY

    S0.506 .-"050166

    2 1.3iol 0.o ? 01

    WAVELENGTH x 0,460 STEP NO . ELIA FUNC.TION-.. . LETINTENSITY-- -. 0 0,4542 0.1565I 0,4542 0O3107

    WAVEL-NGTH x 0t-0 STLP NO, DELIA "UMiCl1ON LUG NET INrEt-SITY0 0,5247 0,2230

    . . . ... 0,2442.2 -1.1233 -0.6132

    WAVELENGTH 0,80 SI.P NO. DELIA FUNClION LUG NET INIENSITYo 0.50OL 02863

    " '0°5006 "0018092 1.1949 "0.5499

    AV.ELENGJH x 0490 STLP NU, DELIA FUNCIION LOG ,ET-I.TENS.TY0 0,5006 0.34531 "0t5006 "0,12192 11,1949 Oo_ .0.4909 . .

    "4AELENGTH a 0.500 STEP NO* DELIA 'UNCIION LUG NEI J'iNTNSOIT. 0,6291 0.4011S-0.*4319 -0.0661

    -1.10606 "0.4351

    WAVELLNGTH 0 0.510 STEP NI), DELIA IUNCILIJN LUG NET IN1ENSITY40 0 s 652 qo. Ao - ..

    1 -0.2880 "0.0132

    2 "1,1233 -0.3822

    WAVELLNTH x 0.520 STEP NO. DELIA FUNCIJUN LOG NET INIEN1TY--0 1.0606 0.5032

  • 119549 i~s.3 r±1.10.0522 0.0834

    WAVELENGTH~ 0.540 STEP Noe OELIA FUNCIION LUG NE.T INTENSITY'

    0 63801 0.59520 0.2311 -0,12/9Os6O2O 02410

    NAVELLNqiTH x 0.550Q STEP NO. Ov.LA lUNCIION LUG NET INTENSITY1106900 0 ,6310

    2 1w0.,367) *091992WAVLLLN(tTH 0.560 sVLp '40. flFLIA FUNC11UN LUG N4ET INIENSITY

    1) 1*9954 0067711 1*65i83 0.2098

    "0 s1 211 001591

    'WA4ELIEN~tH a0.50O SrIP No. ')ELIA FUNCIIN *LOG NCT INIENSfTYL0 4 255 0,247500071 "0 0 1.215

    WAJVCLEN6TH a0.580 s1LIp NUI. iFLIA lUNCIl1 LOG NET (NTCNSItYI 0,201 0.92827

    2 "0. 571 0.).363

    WAVELLNOF 0i,390 SILP :40, 9FLI4 HHCIN LOG NET 1PJTENSiTY

    1 00 63 Bi- 001I662 1091U02 *0.0524

    WAVELLN6rH 0.600 StEP N4u. DELIA FUNCI1IIN LUG NET I4TF.NSITY0678853 0*1453

    K-0.04d "000207

  • K\

    t " .. a .

    rp' * . -LIA P LOG NET aNI CSITY

    • 0,5247 0,170

    -0,305 003B0

    WAVELGTH _0.630 . . STEP NO, _ _ OELIA,.UNC',0N Lg..E_It..STY .S0431 04341

    " 094542 0*0652

    WAVLLENGTH 0.640 STEP NO. DELIA FUNCION ..LUG NET INTENSITY1 0.4319 0,4599

    .0.454. 0,0909

    WAVELENGTH -0.650 STEP NU, DrL1A FUNCIIIN LOG NET INTENSITy_10,4542 0.4i43

    "0.4542 0.1154

    _4y.LEGTH a 0,660 SiLP NU, DELIA fUNC,1ON LOG NEI.jNTC.NS .Y0,6297 0,5076

    "0.3273 0.1386

    WAVELENGTH Q ,).670 STLP NUo OELIA lUNCIIUN LUG NET INTENSITY1 0.8259 0.5296

    "0.1581 0:1607

    WAVLLIN.TH 0.680 STI-P NO. DELIA FUNCIIIN LOG NET INTENSI.T Y --1 1,0604 055062 0,0522 0.1816

    WAVELENGTH a 0.690 STEP 'It)* OELIA FUNCIION LOG NET IN1ENSITY o." 1.004 0.,5704

    "00174 092015

    ! • . - - -

  • TE~JRAT(I~E~ ~O8 0( .!L KELV~1'd-S W".0.40

    St WE[' -j'---. ION-

    0 . .2. 93 . . 4

    -O. ELTA 4UNcal04 LO

    L-0,6 829993 0. 439

    -AVELEN- x" 0-,3 0 . STEP NO, OELIA FUNCrlYON LOG NET INTENSITY0 ""1 .3801 0 .1t529

    S-0,694 ._ - ?o ,j ..--.. .... .. ... . -. .A 900

    06843 .

    WAV'ELENUTs S 0,3S0 STEP NO. OELI I.UNCI1ON LOG NET INTENSITY

    -_- -o.i~ .. . .. . O.26. ..

    I -0.685 ,,0.20462 -1.11949 -0,5736

    WAVELENGrH • 0.390 sLP NO, OELIA FUNCTION LOG NETIN ENSITY

    . 0.5496 0,3633

    1 "O.I04 "0.1039

    2 10*6846 .0,47291 2,9993 ".t1577

    WAVELENGTH 0,400 STEP 40. OELIA FUNCIION LOG NET INTENSITY

    3 1,OOQT -O, 5 ...

    .. . . .. t 0.2311 "0.0132

    2 "0,3475 "0.3822

    3 ",09079 0.T3.6" 1.6900 01*0670

    WAVLLLN TH X 0,410 rsrLP '09 OELIA fUNCIION LOG NET INTENSITY

    0 1*3801 qo.535 -... 0,524f 0,0682

    2 *0.0871 "093007

    .. .50') 0.9855

    . .- . ....... . .. .. -

    I

    5- -5 -~-5--

  • Ia

    i. ii '' 1004

    3 . " ,'03415 ,, "

    WAVLLENGTH ,,O 90 STEP NO. DEIA FUNCTIOM L P0G Nt TINTNSITY

    o 1.9954 1.04

    1 1.0606 050371.. .. .... .. .. . . .. .. 0 . ... 681 0_._,1.. ... o .685_ _ .

    3 0.32175 Y.818S1.0606 05162

    WAVELENGTH x 0.51 . . . OELIA F'UNCION LUG NET NTNSI.TY .

    .)1. 99541 1.0474

    1 1.1949 0.58012 0 32 70 1S0.3273 *0,1392

    -- 'I; "1. 0606 "0,.1736

    WAVELENGTH q A.510 STEP N0. DELIA FUNCIION LUG NLT INIENSITY

    0.5287 0.2514

    0.1581 ". 0990S0901) At.334

    AVELLNUTH 0.530 SrEP NI0. nELIA UNC1I1N LUG NEI INTENSITY1 1.6900 069730.6b85 0.2?884

    3 0.05T "0,0620,| "0,?ii3 "09..'964 -

    WAVELLNGTH 0.530 SrfEP NO. CLIA IUNCILUN LUG N.T INTENSITY1.690,) 0.7931

    - - J ~~0,7533 ;,%2aI .

    WAyEL.:.NGfIlH B 0.54O srgP "40. nELIA FUNC:I1U}l LOG NEt I1I.1ENSI.Y~S1.9951 0.7/263

    0.9541 ",15?4, 0,3211 0,t070

    -0.5006 100274

  • ; AVELENGYH a 0.550 -a! A'.'

    WAVELENGTH a0o560 STEP NO. DELIA VFH4C(ION LC0G NOT INTENSITY___pu -- .- -41 U- -- -

    30.6020 0.06761t000695 00#2668

    NAVELENGTH '0570 STEP NO, DELTA FVNCi!0N* - .1. NE 'INTEWSTY-1. .- .4 -4-4

    0.7533 . 0009510.1041 006 "0t23

    i4U~a 0.,58n STLP NO. IIELIA FUNCIION - ~Lid NtT ITESitii Y2 1.3801 0.fI7093 0.6021) ()4120'1 -6.0696 029

    WAVLLENGTH Oc i STL.P NO. OELrA FUNCIION LOG NET INTENSITY1*3801 0.11954

    I ~0.5A96QeAS

    WAVLLFM6TH a0.600 SIEP 10u. DJELIA FUNCILON LUG NET' INTENSITY21.36301 005180I0*6020 0.1676

    '4 001'402 0.1I666 _

    -aEENT 0.610 SlLP NO. DELIA FUNCILON LOG NET INIEASITY -1*27850.5393

    - .~ - 3 09.5006 0 to.?~;0' s02 126 'Oet455

    WAVELENGTH a0.620 STE.P NO. DELIA FUNCIIJON LOG NET INTENSIYto 123 0.55930.030?', 0. 200

  • - *-~~ '* Ilk

    ~-~' :'.1

    ___________ to D.F : *- 0j.

    Ma VU1 F.~O tw OC I*TtI

    ______ ' UN.CIAO * eKLAVCAm. V

    .3i')6 t 06.3

    hMaVI"1tT a 4e004 SUP 146 OCLIA FUNCIIGN LO6 NET t1Tc161TY

    - -01.2)3 0044

    &TE NdS4 .s,0

    A 1.~O9%001319

  • f. -. . ~ ~*~* ~

    * '4., .%, .w~. -~* 4 ~4 ~ .4 __

    * 4~ ~4, ~,, *,* 4 - .. , .444

    4 '4 ~ *44S - 4~* ** '1~'' ~4~V

    *t 4 - 4. 4~ S ~. 44j~J~

    4; 4 5 9

    - ~ r' _______*~ 44*i..- - 4,4 4 ,4~... ~*.. - .,.~

    * .. 1-.44-

    I-

    F' LI: ________

  • .1.

    I

    1.2 4.o-

    1.8 0/

    1.6 ,I/11 /

    1.4 /1.0 . 4 1000 'a

    ;/ (% ! A 500I '/ A6 500

    0.8"/ 6 5 0 0

    0.66900

    0.2 i) / *.-

    0 F

    -0.2 A /, , Response of Lina-S."graph Shellburst.. /,./' ,,Film to 3000°

    04 Tungsten Strip Lampdevelopme 8 t was

    -0.6 5 min. 70-F D-19in Nikor reel.

    .' -0.8

    -1.0 "- * *- '

    -1.2 * * I Plate 62 ,

    .-1.4 . a --- • -. - -I '

    .71I -1.6 •• ... --..

    .'-

    I Log Net Intensity i

    * -1.2-1.0-.8-.6 -. 4 -. 2 0 .2 . .6 .81.01.24 .6 .8 x . .. ... ..-- -'-' ... . ... . .. - _ . . .I.. .. .

    . . . - , .'- - .:. T V.._

    ! ; "

  • 13............0-.

    P4~j~~

    ri~ 0

    H~0C

    a4 '

    /l I.0'

  • I ~~ 111 -L . -. ' [t . , I .

    P. It

    ~ K 1 .. 1 . 3.1

    '4 -; 0. Lf4) .4~I~

    0 0 W0~i000 1

    [d 43 r4.f Ir-;- Ii El< V] El 1 0& r2U 4

    k rd 4-4 0 0$4

    44 4-4rx 44 CH C*4 I

    ca C 43- 64 _jiI-+ 4- L oW- .Da H-1O 4' A **r 0 =41d

    RL A iI Id ca :4- 0, Tr c 00 H N4

    4." -- -1\Is 9It

    illil; 4ZI

    4:)43I II .IS iiI*T\

    rcl

    0L 0 0 04

    -C :1)

    'ill47li

    S. I.Lo

    '1. 4t ***fa!"

  • 4

    Fore Optics used with Perldn

    Elmer 108 Spectrometer

    - 4- Source Location in the

    High Altitude Chamber

    Chamber port usefuldiameter 6.5" circle

    First surface mirroroncave collector -- / Al - first surface

    mirror - planar

    8" diameterChopper Wheel

    SMorochromator

    Entrance Slit to

    Spectrometer

    Plan View

    Plate 65

  • -P4

    00 >

    ii -~

    \D '0

    i( '0

    17--

  • * *43

    *I..

    IIL .1"1 .1.

    ......

  • .. ,

    "I-

    " I77, - 17

    I.--,, -- , - .. i r r " - . .,-

    7.G

    6.C--Multiplying Factor which correctsMonochromator Spectral Amplitudesto true relative Spectral Amplitudes

    for chosen Wavelength.

    4..0.

    . I -

    1.0-

    11000 4500 500 50 00 50 7o

    -. --Wavlenth An'sr 'u

    Plate 68

    for cosenWavelngth

    U _ --2n.

  • U-Itn -4,]7

    .441

    ~ 2-1 : iJ2

    I ... z. Pla " "" .. t 9 .'; I'i';"4th t.. .... . ... . - .. , .. . .. .- . ... . .. ... ..

    .01

    I. . . I _ . . . ., , I . . . . a. - - ~ _ . , . . . . .. ..

    , :a,, . , , . I., , . . . . Il L . . . ."= , ' ,. I. :: a " . . " , , , ,.:, ,.I-

    F ! , -

    ', " • , . , I ' - , . . , " , I i , : , , :o ,.., , '. . I .- - .. .2 I . . . . . . . .. . .

    0 12 ~-.- '{ ao . -4. :.- -

    . - -

    " '" i " "I." " " " " :: " J !

    " -(a1 ' -1 . ., I . ,i, iItfl I, .t'i • . .:

    . .. .a-- --' - . .j . , .... V p l e 6 I -- Ki- -I. . . . . .. .. . . . . ..

    a aa 'a. .' '. t ' .

    ;* ; i, 1 '

    -J : | I

    * ' j a . . . I ' ; " l ' ' : -} ' . . .

    :' 1.

    UN fo F 47 , , 4 44, 64l

    i i,. I ' T " • '. .I ,

    I ' ' .' i ' ' '!

    b 5 , 4 o , 5. , 5 b,.. . . 2_ 2 3 , 2 4a . - -

    a. " " r . 1 , . t .' .t ;

    S, II . ,.

    .' . i Comparison[ of Doinn Wavele.:: ngth, listed:.1: .i.fo.rttn F lt r..T, 17 l7 , .. .. .6.. . ..

    129 ahd 70 with Colorimeter Reading.

    I a" I ' " I ' i .

    0 , ' , "a ' ,: . I , , i . . : ... ., ' - ' - -

    450 5000 5500 6000 6500

    Angstroms

    Dominant Wavelength Read by ColoriiieterK . ." i , , , [':' '. ' ":'''2:

  • 'U

    Plate 70

    0 Al-Sr(ClO) 2 - PVU/F-33 40/60/9i

    28 - - Runs 116-120

    OeR I \a - , ,

    Ia .- I

    05_____\ 1 e.wen / g

    0 0.1 O.s 0 3 0. 7,iI

  • Plate 71

    B-Ba(C104 ) 2 -PVC/F-34 40/60/8

    Runs 81-87

    so.

    6006

    y sox '~~~.."--I 'q. ~ .

    a5~ -el 680

    #so

    0 0.1 0-2 0..3 0. I lS L 0.7

    L

  • Plate 72

    s o 2 B-Ba(ClO ) 2 -

    PVC/F-34 40160/7

    -6

    Runs 101-106

    5f0a7\

    \- s

    I

    R/06

    500

    \;' \\].1'"

    I1/o

    H I _R ed

    4-7e

    q $60

    0 0.3 0. ,6 0 7

  • Plate 73

    Q8____ B-KC10O4 PV/-530/70/5

    I j Runs 7o-80c

    0s -I

    500

    as SaoI _ _

    4,,

    0 0./ 0.2 0. 3 0.* f .5 0.7

  • Plate 711

    Mg-KC10 4 - PVC/F-36 40/60/7.

    s 3o ! Runs 59-65

    o.,9

    I I e' / -5-00

    Ye to I"/ YellowS

    0 450

    Blue..

    -4 i

    0 0.1 0. 0.f 0. t 05" C6 0.7

  • Plate 75

    0.9

    ,ng-LiClO,, - PVC/F-38 40/60/9

    _ _._ _._ __ , K , ii b7\ 1sss

    sRuns! 107 11

    I." . /YeI.!.. . I

    6 0 I

    0 .1 0,2 0.3 0.1' 3. 6 0.7

    0.5.

  • Plate 76

    S0 5249 1g-NaClO~ 4 PVC/F-39 40/60/9.

    3Q1 ____ Riuns 90-99

    a7'7

    i./Yelowl 580 9

    I: ~ ..- '~, so Goo

    C* JWHZTE --. ec 620___

    4160 /450

    0 0.1 0. 0.3 0. f as0.7

  • Plate 77

    Mg-Li104O - PVC/F-56 60/40/9

    - -_____ Runs 123-131

    a66

    50~56

    500 \ !'j~~.

    0.6- V Iye'llow P3

    a3 HITE __ ___0_

    *75

    4~o I

    0 0.1 0.2 0.3 0.* f 0$ 1 0.72:

  • Plate 78

    .1MG-NaC1O14 - PVC/F-57 6/4/'536 Runs 132-141

    IS #1-5050

    5 Isloe

    #700

    IR13

  • Plate 79

    0 Mg-NaC1O4 at 75 torr, air5/ -NaNO 3

    08 -- QLSummary, Sodium Flare

    07 5530

    550

    SOT6

    sox i-

    0L. __ _ I_ _

    IHI-

    4O

    460

    450 __ _ _ _

    0 Od~. 0.2 0.3 0. *L 0.7

  • Plate 80

    0.9 1 I Mg-NaClj, at 630 torr, airQB uxnmary Sodium Flare

    a7? ____

    )Sol,

    Soo~

    a3 ~:f~o, HITYe .j d

    -4:2:

  • Plate 81

    , 4 Mg-NaClO4 all pressures516__ -NaNO3

    Summary, Sodium Flare

    yas- -I 9, g

    Of -

    HITE __ ____ _

    0 o / \\ IIIo I S\ e /

    48

    4 0460

    a;I fSO.- I i

    0 0./ 0.2 0.3 0.'P 0.51 06 0.7

  • UnclassifiedSecurity Classification

    DOCUMENT CONTROL DATA- R&D(Sgourily C lassifcation of gifte body of .ibstract and Indexing arnnoistion must be entered when the overiall teprt Fe clessifed)

    I ORIGINATING ACTIVIvY (Corporate author) Za nIcPORT SECURITY C LAssirICATIONMechanics Division -Denver Research Insticute U6neGROUiPiedUniversity of Denyer -Zb -OUPDenver, Colorado 002t0_-_....

    3. REPORT TITLE

    STUDY OF SPECTIA OF j4TAL-OXTDmlTm COMBINATIONS

    4. DESCRIPTIVE NOTES (Type of report and nchusIv, dfe.)

    Final Report Ltrch 1067 - !art, 19608S AUTHOR(S) (Let name. first name. Wislt)

    Blunt, Robert 1.

    6 REPORT DATE 7e 7OTAL 140 Or P&GEs 7b NO Orr-q

    1 March 1968 1 0-7 0 -Be CONTRACI Oil C14ANYT NO ; 4 ORIGINA IOR'5 f'rpop

    - NlUMarws{ )

    AIRTASK NO. A35-532-022/323-1/F008-17- Ib OROJZCT N. 02 I Fn,,l Peport ?916-6803-FW~ork Unit 04 1C. i 9b 0uihs4pEn R EPORT NO(S) (Any ofher numb.re thet may b &.sigred

    d NO0_1.- -[--O'.2, . RIIR NO. 12610. A VA It. ABILITY/LIMITA TION NOTICES

    DIstribution of this document is uni'mited.

    11 SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITYU.S. Naval Ammunition Depot

    ---------------- Crane, Indiana

    13 ABSTRACT 0

    The time-integrated grating spectra obtained at a dispersion of 14.A/.m fromflames produced by Mg1-afNO3 ), Mg-N.NO.., M!ia(N0)3)' Sr(NOs) 2 "TF AI"NaCI0 4

    -PVC, Al-Na10 4- pv -KtlI - IWC A-Sr((.ltI, 1 ,-PVC. B-IsaC 1o).-PVC, B-KCIO -PVC,lg-I.iClO 4 -1VC, Mg-NaClO., at different ieight p.rcentages are photographically

    reproduced.These spectra have bect. ,,btainL(' f-om flarmes burning in ambient air ranging in

    pressure from 630 torr to 70 torr.Time-rcsolved spectra have becn obtaincd from, these sa.ie compositions, burning

    at the same ambient pressutres., V.th a Perkin l.mer Model 108 Scanninr Spectrometerat a rate of 3 per second. Photoieraphic enlargements of typical spectra asphotographed on the CRO are shown.

    The colorimetric purity, dominant wavelenpth, intensity and interated light output from the same mixtures burnInp kIndcr the same conditions are tabulated and alsoplotted on c.jr. chromaticity charts.

    The absorption of the ljpiht rcsultingp from its passage through the smoke evolvedduring combustion has been deterwined and absorption coefficients tabulated for thesmoke from several different compositions and ambient pressures.

    Suggestions have beci made for further studies of combustion problems.

    D 1ORMDD JANO 147 UnclabsifiedSecurity Classification

  • Secuty lsfcatkn _ _ __ _ _ _

    14 LINK A LINK B LINK CKEY WORDOS-

    _________________________________ROLE WST POLE wT ROLE WT

    FFlares~Iflunirating FlaresSignalling FlaresColored F~lares

    Loniinant Wavelenvth

    Emi ttersSpet.raD~iinous Intensity

    INSTRUCTIONS

    1. OPIGINATING ACTIVITY: Enter the name and address imiposed by security cla-.-fieation, using standord statementsof the contrac:tor, subcontractor, cretitee. Department of I(- -'uch as:fense activity or other organization (corporate authore) issuing (1) "Qualified requesters may obtain copies of thisthe report. T par: (trnm ODC."2o REPORT SE.CUITY CLASSIFICATION. Enter the over 'if"1 oreigni annouia enent and dissemination of thisall security classification of the report. Indicetc whether rpr yDCI o ttoie."Restricted Data" is included. Marking is to he in accor,rpotyDCivntahrzd.ance with appropriate security repgul..' enT.. (3) "U S Government avencies may obtain copies of2b,. GROUP. Auto'rnatic downgraing in specified in DoD) Di- this rliport directly fromi DDC. Other qualified ODCrective 5200. 10 and Armed Forces lirdusmral Manuhl. Fi( users shall request th,oughtle group number. Also, when npplicilrle, shov that optional ~ ___________-r. arkings have b'eein useJ foir Group 3 stud Groop 4 as zkituor- (4) "U. S. military agencies may obtain copies of thisI;, d. j report directly front DDC Other qualified usersin. R0PORT TITLE: Einter the complete report titir in all shaill icutures throughcapital le'tos. Taies in alt caner. should be unclassified.If " rmeaningful ti cannot he gelecte'i vrthorit clasiiifica-troun, %how title classification in ill cetirals iii parenthesis (S) "All dititrilbution of thtis report is controlled. Qual-immedtatel y following the title, ified DDC uliers shall request through

    4. DESCRIPTIVF NOTE S: If apprroprite. enter the type of ____-

    rte oth eg. interim.e pdates he sary -.11tcf re orn feirl Ifthe report has been furnished it the Office of TechnicalGivetheincubie dteswhe a ttciic epotulg prio me Services, Department of Commer e. for sale :o the public. indl.

    covered. rate this fact and enter the price, if known..5. At'f'IlOR(S : Flrter the nomets) of autbol'is) uts struvi on it SUPP;.EMENTARY NOTES: Use for additional explana.ur in the report. Euiti tast name. first namte. middle Initiul. l ory notes.If milittfry, shoW rank ond branch of service. The name ot(the principal ,'thor is an atbsohute mittiiini requirtement. 12I. SPONSORING MILITARY ACT!VITYi Enter the name of6. REPORT DArT. Enter the daie of tiw i'po I. ds , the deutwial7~ec ,fiv olinIor fp ) "q~pIng for) the reaearc) undf deve opni~v I. Include addregs,iaonti )avroitipa. If moore than one ttt'appeare '' . .I L .. Ion the report, use date cf l'u

    t licat ion. 13 AI3S'rRACT Enter an absfract giving a btie an;'d factualruniry of the~ docuiment tindicttive of the report. even thtgh

    7alOTAL. NtJMHfFR OF PIAGFS The t'utai page "'writ it may, also appear elsewhere ini the body of the technical re-shoud follow normal paugination pro( edueC% I.e.. enter the pert. If additional space i-; required, a continuation sheet ajhall'numher of paugCs containing information, be attached.

    7b. NUMisER OF REFERENCES. Enter the total number of j It is highly fe'tirable flhrt the absitract of classified reportsrcferences (ited in (iue report. Ic unclassified Each paragra