๐‘›ย ยท ๐‘› ๐‘› ๐’Œ ๐’Œ ๐’ ๐’Œ= โ‰ค ๐’Œ ๐’ ๐’Œ= ๐’Œ ๐’ ๐’Œ= (using lagrange...

1
<date/time> = โ‰ค = = ( Using Lagrange Identity Algebraic method Using mathematical induction Using arithmetic- geometric means Geometric proof Using convex function and Jensenโ€™s inequality Some methods of proof For all complex numbers 1 , 2 ,โ€ฆ, and 1 , 2 ,โ€ฆ, there is an inequality =1 2 โ‰ค 2 =1 2 =1 . Consider sequences of complex numbers { } =1 and =1 , where = 2โˆ’1 + 2 , = 2โˆ’1 + 2 . Notice, that =1 2 = Re =1 2 + Im =1 2 = = Re 2โˆ’1 + 2 2โˆ’1 โˆ’ 2 =1 2 + Im 2โˆ’1 + 2 2โˆ’1 โˆ’ 2 =1 2 = = 2โˆ’1 2โˆ’1 + 2 2 =1 2 + 2 2โˆ’1 โˆ’ 2โˆ’1 2 =1 2 = 2 =1 2 + + 2 2โˆ’1 โˆ’ 2โˆ’1 2 =1 2 . 2 =1 2 =1 = ( 2โˆ’1 2 + 2 2 ) =1 ( 2โˆ’1 2 + 2 2 ) =1 = 2 2 =1 2 2 =1 . Hence, the Cauchy-Bunyakovsky inequality has the form: 2 2 =1 2 2 =1 โˆ’ 2 2โˆ’1 โˆ’ 2โˆ’1 2 =1 2 โ‰ฅ 2 =1 2 = = โˆ’ โˆ’ โˆ’ โˆ’ = โ‰ฅ = If 1 ,โ€ฆ, and 1 ,โ€ฆ, are quaternion, then the Cauchy-Bunyakovsky inequality has a form: =1 2 โ‰ค 2 =1 2 =1 . Denote = 4โˆ’3 + 4โˆ’2 + 4โˆ’1 + 4 , = 4โˆ’3 + 4โˆ’2 + 4โˆ’1 + 4 . Then 2 = 4โˆ’3 2 + 4โˆ’2 2 + 4โˆ’1 2 + 4 2 , 2 = 4โˆ’3 2 + 4โˆ’2 2 + 4โˆ’1 2 + 4 2 , 2 =1 = 4โˆ’3 2 + 4โˆ’2 2 + 4โˆ’1 2 + 4 2 =1 = 2 4 =1 , 2 =1 = 4โˆ’3 2 + 4โˆ’2 2 + 4โˆ’1 2 + 4 2 =1 = 2 4 =1 . = + โˆ’ โˆ’ โˆ’ = + + โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ + โˆ’ โˆ’ โˆ’ = + + โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ + โˆ’ โˆ’ โˆ’ = โ‰ค = โ‹… = . = + + + , 2 = 2 = 2 = โˆ’1

Upload: others

Post on 23-Jul-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ๐‘›ย ยท   ๐‘› ๐‘› ๐’Œ ๐’Œ ๐’ ๐’Œ= โ‰ค ๐’Œ ๐’ ๐’Œ= ๐’Œ ๐’ ๐’Œ= (Using Lagrange Identity Algebraic method Using mathematical

<date/time> <footer>

๐‘›

๐‘›

๐’‚๐’Œ๐’ƒ๐’Œ

๐’

๐’Œ=๐Ÿ

๐Ÿ

โ‰ค ๐’‚๐’Œ๐Ÿ

๐’

๐’Œ=๐Ÿ

๐’ƒ๐’Œ๐Ÿ

๐’

๐’Œ=๐Ÿ

(

Using Lagrange Identity

Algebraic method

Using mathematical

induction

Using arithmetic-geometric

means

Geometric proof

Using convex function and

Jensenโ€™s inequality

Some methods of proof

For all complex numbers ๐‘Ž1, ๐‘Ž2, โ€ฆ , ๐‘Ž๐‘› and ๐‘1, ๐‘2, โ€ฆ , ๐‘๐‘›

there is an inequality

๐‘Ž๐‘˜๐‘ ๐‘˜

๐‘›

๐‘˜=1

2

โ‰ค ๐‘Ž๐‘˜2

๐‘›

๐‘˜=1

๐‘๐‘˜2

๐‘›

๐‘˜=1

.

Consider sequences of complex numbers {๐‘ข๐‘˜}๐‘˜=1๐‘› and ๐‘ฃ๐‘˜ ๐‘˜=1

๐‘› , where ๐‘ข๐‘˜ = ๐‘Ž2๐‘˜โˆ’1 + ๐‘–๐‘Ž2๐‘˜ , ๐‘ฃ๐‘˜ = ๐‘2๐‘˜โˆ’1 + ๐‘–๐‘2๐‘˜ .

Notice, that

๐‘ข๐‘˜๐‘ฃ ๐‘˜

๐‘›

๐‘˜=1

2

= Re ๐‘ข๐‘˜๐‘ฃ ๐‘˜

๐‘›

๐‘˜=1

2

+ Im ๐‘ข๐‘˜๐‘ฃ ๐‘˜

๐‘›

๐‘˜=1

2

=

= Re ๐‘Ž2๐‘˜โˆ’1 + ๐‘–๐‘Ž2๐‘˜ ๐‘2๐‘˜โˆ’1 โˆ’ ๐‘–๐‘2๐‘˜

๐‘›

๐‘˜=1

2

+ Im ๐‘Ž2๐‘˜โˆ’1 + ๐‘–๐‘Ž2๐‘˜ ๐‘2๐‘˜โˆ’1 โˆ’ ๐‘–๐‘2๐‘˜

๐‘›

๐‘˜=1

2

=

= ๐‘Ž2๐‘˜โˆ’1๐‘2๐‘˜โˆ’1 + ๐‘Ž2๐‘˜๐‘2๐‘˜

๐‘›

๐‘˜=1

2

+ ๐‘Ž2๐‘˜๐‘2๐‘˜โˆ’1 โˆ’ ๐‘Ž2๐‘˜โˆ’1๐‘2๐‘˜

๐‘›

๐‘˜=1

2

= ๐‘Ž๐‘˜๐‘๐‘˜

2๐‘›

๐‘˜=1

2

+

+ ๐‘Ž2๐‘˜๐‘2๐‘˜โˆ’1 โˆ’ ๐‘Ž2๐‘˜โˆ’1๐‘2๐‘˜

๐‘›

๐‘˜=1

2

.

๐‘ข๐‘˜2

๐‘›

๐‘˜=1

๐‘ฃ๐‘˜2

๐‘›

๐‘˜=1

= (๐‘Ž2๐‘˜โˆ’12 + ๐‘Ž2๐‘˜

2 )

๐‘›

๐‘˜=1

(๐‘2๐‘˜โˆ’12 + ๐‘2๐‘˜

2 )

๐‘›

๐‘˜=1

= ๐‘Ž๐‘˜2

2๐‘›

๐‘˜=1

๐‘๐‘˜2

2๐‘›

๐‘˜=1

.

Hence, the Cauchy-Bunyakovsky inequality has the form:

๐‘Ž๐‘˜2

2๐‘›

๐‘˜=1

๐‘๐‘˜2

2๐‘›

๐‘˜=1

โˆ’ ๐‘Ž2๐‘˜๐‘2๐‘˜โˆ’1 โˆ’ ๐‘Ž2๐‘˜โˆ’1๐‘2๐‘˜

๐‘›

๐‘˜=1

2

โ‰ฅ ๐‘Ž๐‘˜๐‘๐‘˜

2๐‘›

๐‘˜=1

2

๐’‚๐’Œ๐Ÿ

๐Ÿ๐’

๐’Œ=๐Ÿ

๐’ƒ๐’Œ๐Ÿ

๐Ÿ๐’

๐’Œ=๐Ÿ

โˆ’ ๐’‚๐Ÿ๐’Œ๐’ƒ๐Ÿ๐’Œโˆ’๐Ÿ โˆ’ ๐’‚๐Ÿ๐’Œโˆ’๐Ÿ๐’ƒ๐Ÿ๐’Œ

๐’

๐’Œ=๐Ÿ

๐Ÿ

โ‰ฅ ๐’‚๐’Œ๐’ƒ๐’Œ

๐Ÿ๐’

๐’Œ=๐Ÿ

๐Ÿ

๐’

If ๐‘ข1, โ€ฆ , ๐‘ข๐‘› and ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› are quaternion, then the

Cauchy-Bunyakovsky inequality has a form:

๐‘ข๐‘ก๐‘ฃ ๐‘ก

๐‘›

๐‘ก=1

2

โ‰ค ๐‘ข๐‘ก2

๐‘›

๐‘ก=1

๐‘ฃ๐‘ก2

๐‘›

๐‘ก=1

.

Denote ๐‘ข๐‘ก = ๐‘Ž4๐‘กโˆ’3 + ๐‘–๐‘Ž4๐‘กโˆ’2 + ๐‘—๐‘Ž4๐‘กโˆ’1 + ๐‘˜๐‘Ž4๐‘ก , ๐‘ฃ๐‘ก = ๐‘4๐‘กโˆ’3 + ๐‘–๐‘4๐‘กโˆ’2 + ๐‘—๐‘4๐‘กโˆ’1 + ๐‘˜๐‘4๐‘ก.

Then ๐‘ข๐‘ก2 = ๐‘Ž4๐‘กโˆ’3

2 + ๐‘Ž4๐‘กโˆ’22 + ๐‘Ž4๐‘กโˆ’1

2 + ๐‘Ž4๐‘ก2 ,

๐‘ฃ๐‘ก2 = ๐‘4๐‘กโˆ’3

2 + ๐‘4๐‘กโˆ’22 + ๐‘4๐‘กโˆ’1

2 + ๐‘4๐‘ก2 ,

๐‘ข๐‘ก2

๐‘›

๐‘ก=1

= ๐‘Ž4๐‘กโˆ’32 + ๐‘Ž4๐‘กโˆ’2

2 + ๐‘Ž4๐‘กโˆ’12 + ๐‘Ž4๐‘ก

2

๐‘›

๐‘ก=1

= ๐‘Ž๐‘ก2

4๐‘›

๐‘ก=1

,

๐‘ฃ๐‘ก2

๐‘›

๐‘ก=1

= ๐‘4๐‘กโˆ’32 + ๐‘4๐‘กโˆ’2

2 + ๐‘4๐‘กโˆ’12 + ๐‘4๐‘ก

2

๐‘›

๐‘ก=1

= ๐‘๐‘ก2

4๐‘›

๐‘ก=1

.

๐’‚๐’•๐’ƒ๐’•

๐Ÿ’๐’

๐’•=๐Ÿ

๐Ÿ

+ ๐’‚๐Ÿ๐’•๐’ƒ๐Ÿ๐’•โˆ’๐Ÿ โˆ’ ๐’‚๐Ÿ๐’•โˆ’๐Ÿ๐’ƒ๐Ÿ๐’•

๐Ÿ๐’

๐’•=๐Ÿ

๐Ÿ

+

+ ๐’‚๐Ÿ’๐’•โˆ’๐Ÿ๐’ƒ๐Ÿ’๐’•โˆ’๐Ÿ‘ โˆ’ ๐’‚๐Ÿ’๐’•โˆ’๐Ÿ‘๐’ƒ๐Ÿ’๐’•โˆ’๐Ÿ + ๐’‚๐Ÿ’๐’•โˆ’๐Ÿ๐’ƒ๐Ÿ’๐’• โˆ’ ๐’‚๐Ÿ’๐’•๐’ƒ๐Ÿ’๐’•โˆ’๐Ÿ

๐’

๐’•=๐Ÿ

๐Ÿ

+

+ ๐’‚๐Ÿ’๐’•โˆ’๐Ÿ๐’ƒ๐Ÿ’๐’•โˆ’๐Ÿ โˆ’ ๐’‚๐Ÿ’๐’•โˆ’๐Ÿ๐’ƒ๐Ÿ’๐’•โˆ’๐Ÿ + ๐’‚๐Ÿ’๐’•๐’ƒ๐Ÿ’๐’•โˆ’๐Ÿ‘ โˆ’ ๐’‚๐Ÿ’๐’•โˆ’๐Ÿ‘๐’ƒ๐Ÿ’๐’•

๐’

๐’•=๐Ÿ

๐Ÿ

โ‰ค ๐’‚๐’•๐Ÿ

๐Ÿ’๐’

๐’•=๐Ÿ

โ‹… ๐’ƒ๐’•๐Ÿ

๐Ÿ’๐’

๐’•=๐Ÿ

.

๐Ÿ’๐’

๐‘ž = ๐‘Ž + ๐‘–๐‘ + ๐‘—๐‘ + ๐‘˜๐‘‘, ๐‘–2 = ๐‘—2 = ๐‘˜2 = โˆ’1