, n n o f b o y t i s r e v i n , u e t u t i t s n l i a ... · f o r m a m l t h e i c s n d m a...

32

Upload: others

Post on 28-Oct-2019

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

FormalMathematicsandMathematicalPracticePeterKoepke,MathematicalInstitute,UniversityofBonn,Germany14thCongressofLogic,Methodology,andPhilosophyofScienceSpecialSymposium:MathematicsandtheNewTechnologiesNancy,July22,2011

Page 2: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011Formalmathematics1. Formalmathematicshasbecomeanestablishedresearcharea.2. Formalmathematicsisalreadycoveringsubstantialmathematicalresults.3. Formalmathematicsisbeginningtointeractwithresearchmathematics.4. Formalmathematicscouldbecomepartofmathematicalpractice.5. Theacceptanceof formalmathematicsinmathematical practicewill dependonthenaturalnessofitsuse.6. Thenaturalnessofformalmathematicscanbeincreasedconsiderably.7. Formalmathematicswillbecomeaneverydaytoolinmathematicalpractice(?)

Page 3: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011FoundationsofformalmathematicsKurtGodelÈ :UberÈ formalunentscheidbareSatzeÈ derPrincipiaMathematicaundverwandterSystemeI.DieEntwicklungderMathematikinderRichtungzugroûererÈ ExaktheithatbekanntlichdazugefuhrtÈ ,daûweiteGebietevonihrformalisiertwurden,inderArt,daûdasBeweisennacheinigenwenigenmechanischenRegelnvollzogenwerdenkann.DieumfassendstenderzeitaufgestelltenformalenSystemesinddasSystemderPrincipiaMathematica(PM)einerseits,dasZermelo-Fraenkelsche(vonJ.v.Neumannweiterausgebildete)Axiomen-systemderMengenlehreandererseits.DiesebeidenSystemesindsoweit,daûalleheuteinderMathematikangewendetenBeweismethodeninihnenformalisiert,d.h.aufeinigewenigeAxiomeundSchluûregelnzuruckgefuhrtÈ Èsind.

Page 4: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011FoundationsofformalmathematicsKurtGodelÈ :UberÈ formalunentscheidbareSatzeÈ derPrincipiaMathematicaundverwandterSystemeI.Asiswell-knownthedevelopmentofmathematicstowardsgreaterexact-nesshasleadtothepointthatlargeareaswereformalisedinawaythatproofscanbecarriedoutaccordingtoasmallnumberofmechanicalrules.[...]Thesetwosystemsaresufficientlydevelopedsothatallproofmethodscurrentlyappliedinmathematicscanbeformalisedinthem,[...].

Page 5: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011FoundationsofformalmathematicsKurtGodelÈ :UberÈ formalunentscheidbareSatzeÈ derPrincipiaMathematicaundverwandterSystemeI.Asiswell-knownthedevelopmentofmathematicstowardsgreaterexact-nesshasleadtothepointthatlargeareaswereformalisedinawaythatproofscanbecarriedoutaccordingtoasmallnumberofmechanicalrules.[...]Thesetwosystemsaresufficientlydevelopedsothatallproofmethodscurrentlyappliedinmathematicscanbeformalisedinthem,[...].

Page 6: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011Foundationsof formalmathematics:modelingmathe-maticsbymathematicallogicMathematics MathematicallogicLanguage-basicnotions symbols -Syntaxstatements formulasproofs formalderivations(⊢)↔Ontology- structures sets,relations,etc -Settheoretictruth satisfactionrelation semanticsimplication logicalimplication(�)...

Page 7: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011Foundationsof formalmathematics:modelingmathe-maticsbyformallogic

− excellentagreementbetweenontologyandsemantics:agroupisasetsuchthat...− completeagreementbetweensyntaxandsemantics:GodelÈ completenesstheorem:⊢ = �

− hence:everyproofcanbereplacedbyaformalderiva-tion− formalmathematics:toactuallyproduceformalderiva-tionsfrominformalproofs

Page 8: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011OnthefeasabilityofformalmathematicsN.Bourbaki:[...]suchaprojectisabsolutelyunrealizable:thetiniestproofatthebeginningsoftheTheoryofSetswouldalreadyrequireseveralhundredsofsignsforitscompleteformalization.[...]formalizedmathematicscannotinpracticebewrittendowninfull,[...]J.McCarthy:Proofstobecheckedbycomputermaybebrieferandeasiertowritethantheinformalproofsacceptabletomathematicians.Thisisbecausethecomputercanbeaskedtodomuchmoreworktocheckeachstepthanahumaniswillingtodo,andthispermitslongerandfewersteps.

Page 9: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011Thedevelopmentofformalmathematicssystems− Automath,deBruijn,~1967− Mizar,Trybulec,~1973− Isabelle/Isar,Paulson,Nipkow,Wenzel,~2002− Coq

− HOLLight,Harrison− manyothersystems

Page 10: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011SubstantialmathematicsinAutomathvanBenthemJutting,1977CheckingEdmundLandau,GrundlagenderAnalysis

Page 11: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011SubstantialmathematicsinMizarBanachFixedPointTheoremforcompactspaces,theBrouwerFixedPoint Theorem, theBirkhoff VarietyTheoremformanysortedalgebras,Fermat'sLittleTheorem,theFunda-mentalTheoremofAlgebra, theFundamentalTheoremofArithmetic, theGodelÈ CompletenessTheorem, theHahn-BanachTheoremforcomplexandrealspaces,theJordanCurveTheoremforspecialpolygons,..............

Page 12: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011SubstantialmathematicsinIsabelle/Isarlargest...istheformalizationofGodelÈ 'sproofoftherelativeconsistencyoftheaxiomofchoice

Page 13: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011SubstantialmathematicsinCoqFundamentalTheoremofAlgebrabyHermanGeuvers,FreekWiedijk,JanZwanenburg,RandyPollack,HenkBarendregtProofofBuchberger'salgorithmbyLaurentThery,HenrikPersson...

Page 14: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011SubstantialmathematicsinHOLLightFundamental theoremofcalculus, fundamental theoremofalgebra,inversefunctiontheorem,Brouwer'sfixpointtheorem,Jordancurvetheorem,compactnessandLowenheimÈ -Skolemtheorem,GodelÈ 'sfirstincompletenesstheorem,...

Page 15: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011BigtheoremsinIsabelle/IsarPrimeNumberTheorem,elementaryproof,byJ.Avigadetal.

Page 16: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011BigtheoremsinHOLLightPrimeNumberTheorem,analyticalproof,byJ.Harrison

Page 17: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011BigtheoremsinCoqFourColourTheorem,byG.Gonthier

Page 18: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011TheflyspeckprojectFormalproofoftheKeplerconjecture(T.Halesetal.),usingvarioussystems.

Page 19: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011Whyisformalmathematicsnotyetwidelyused?− Wiedijk:TheotherreasonthattherehasnotbeenmuchprogressonthevisionfromtheQEDmanifestoisthatcurrentlyformalizedmathematicsdoesnotresemblerealmathematicsatall.Formalproofslooklikecom-puterprogramsourcecode.− Sofar,formalmathematicsdoesnotfitcommonmathe-maticalpractice(s).

Page 20: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011Naturalnessinformalmathematics− inputandoutputlanguagesandformats− userinterfaces

− logics

− backgroundtheories− automation− ...

Page 21: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011Naturallanguage

− mathematicallanguage=naturallanguage+formulas− usecomputationallinguisticstoparseinputlanguage− formalgrammarsdefinecontrollednaturallanguagesformathematics− discourserepresentationtheorycanhandlemathemat-icaltextsasdiscourses(likestories)− usenaturallanguagetodescribe/steerCoqorHOLstyleproofs?

Page 22: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011Userinterfaces

− useLATEX-stylelanguageformathematicaltypesetting− mergeexistingformal mathematicsinterfaceswithLATEXeditors− useLATEXqualitywysiwygeditorslikeTEXMACS

Page 23: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011Logics

− classicallogic

− rich(dependent)typesystem− declarativeproofstyle− manyfiguresofproof/argumentation

Page 24: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011Automation

− usestronggeneralorspecialpurposeautomaticthe-oremproverstoderivestatementsinproofsfrompre-cedingpremises− use``reasoner''modulesforstraightforwardinferencesandsubstitutions,beforeinvokingautomatictheoremprovers− premiseselectionaccordingtonaturallanguagecuesandtextstructure

Page 25: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011TheSADproject:SystemforAutomatedDeduction− A.Lyaletski,A.Paskevich,K.Verchinine− ForTheL:FormulaTheoryLanguage,acombinationofcontrolledEnglishwithmathematicalnotation− Reasonerperforming``obvious''inferences− genericinterfacetofirst-orderprovers

Page 26: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011TheSADproject:SystemforAutomatedDeductionTheoremMain.Forallnonzeronaturalnumbersn,m,pifp*(m*m)=(n*n)thenpiscompound.Proofbyinduction.Letn,m,pbenonzeronaturalnumbers.Assumethatp*(m*m)=(n*n).Assumethatpisprime.Hencepdividesn*nandpdividesn.Takeq=n/p.Thenm*m=p*(q*q).Indeedp*(m*m)=p*(p*(q*q)).m<n.Indeedn<=m=>n*n<=m*m.Hencepiscompound.qed.

Page 27: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011TheNaprocheproject:Naturallanguageproofchecking− studiesthesyntaxandsemanticsofthelanguageofmathematicalproofs,emphasizingnaturallanguageandnaturalargumentation,relatingthemtoformalmathe-matics

− modelsnatural languageproofsusingcomputer-sup-portedmethodsofformallinguistics(naturallanguageprocessing) andformal logic (automatic theoremprovers)

Page 28: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011E.Landau,GrundlagenderAnalysis,1930? Theorem30:Forallx, y, z , x ∗ (y + z) = (x ∗

y) + (x ∗ z).Proof:Fixx, y.x ∗ (y + 1) = x ∗ y ′ = x ∗ y +x= (x ∗ y) + (x ∗ 1).Nowsupposex ∗ (y + z) = (x ∗ y) + (x ∗ z).Thenx ∗ (y + z ′) = x ∗ ((y + z)′) = (x ∗ (y +z)) + x = ((x ∗ y) + (x ∗ z)) + x = (x ∗ y) +((x ∗ z) + x) = (x ∗ y)+ (x ∗ z ′).Thusbyinduction,forall z,x ∗ (y + z) = (x ∗y) + (x ∗ z).Qed.

Page 29: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011CombiningSADwithnaturallanguageTheorem 1. (Fuerstenberg) Let S = {Arseq(0, r) |r is prime}. Then S is

infinite.

Proof. We have −⋃

S = {1,− 1}, indeed n belongs to⋃

S iff n has a primedivisor.

Assume that S is finite. Then⋃

S is closed and −⋃

S is open. Take p suchthat ArSeq(1, p)⊆−

⋃S.

Claim. ArSeq(1, p) has an element that does not belong to {1,− 1}.Proof . 1 + p and 1 − p are elements of ArSeq(1, p). 1 + p � 1 ∧ 1 − p � 1. 1 +p� − 1 ∨ 1− p� − 1. qed .

Contradiction. �

Page 30: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011Outlook

− Combinebestpracticesfromvariousformalmathe-maticssystemstoobtainnaturalnessandpower− willthisachieveacceptancebymathematicalpraction-eers

− JeremyAvigad:Onapersonalnote,Iamentirelycon-vincedthatformalverificationofmathematicswilleven-tuallybecomecommonplace.− Whatwouldbetheimplicationsofawidespreaduseofformalmathematicsforthemethodology,practice,andphilosophyofmathematics?

Page 31: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t

Pe ter Koepke : F orm a l M a them atics and M a them atic a l P ra ct ic e , N ancy , Ju ly 22, 2011ThankYou!

Page 32: , n n o f B o y t i s r e v i n , U e t u t i t s n l I a ... · F o r m a M l t h e i c s n d M a t h e m i c P l r, n n o f B o y t i s r e v i n , U e t u t i t s n l I a c i t