oikos · mutualistic networks are typical examples of complex systems, since the interactionof...

26
Oikos OIK-01613 Mello, M. A. R., Rodrigues, F. A., Costa, L. F., Kissling, W. D., Şekercioğlu, C. H., Marquitti, F. M. D. and Kalko, E: K. V. 2014. Keystone species in seed dispersal networks are mainly determined by dietary specialization. – Oikos doi: 10.1111/oik.01613 Appendix 1 Datasets used 1. Bats i. Faria, D. M. 1996. Uso de recursos alimentares por morcegos filostomídeos fitófagos na Reserva de Santa Genebra, Campinas, São Paulo. In Departamento de Zoologia, vol. MSc Campinas: Universidade Estadual de Campinas. ii. Garcia, Q. S., Rezende, J. L. and Aguiar, L. M. S. 2000. Seed dispersal by bats in a disturbed area of southeastern Brazil. – Rev. Biol. Trop. 48: 125–128. iii. Giannini, N. P. and Kalko, E. K. V. 2004. Trophic structure in a large assemblage of phyllostomid bats in Panama. – Oikos 105: 209–220. We also included additional data for this site acquired after the publication of this paper. iv. Gorchov, D. L., Cornejo, F., Ascorra, C. F. and Jaramillo, M. 1995. Dietary overlap between frugivorous birds and bats in the Peruvian Amazon. – Oikos 74: 235–250. v. Hayashi, M. M. 1996. Morcegos frugívoros em duas áreas alteradas da fazenda Lageado, Botucatu, Estado de São Paulo. In Instituto de Biociências, vol. MSc Botucatu: Universidade Estadual Paulista. vi. Passos, F. C., Silva, W. R., Pedro, W. A. and Bonin, M. R. 2003. Frugivoria em morcegos (Mammalia, Chiroptera) no Parque Estadual Intervales, sudeste do Brasil. – Rev. Bras. Zool. 20: 511–517. vii. Pedro, W. A. 1992. Estrutura de uma taxocenose de morcegos da Reserva do Panga (Uberlândia, MG), com ênfase nas relações tróficas em Phyllostomidae (Mammalia: Chiroptera). In Departamento de Zoologia, vol. M.Sc. Campinas: Universidade Estadual de Campinas.

Upload: duongdan

Post on 22-Dec-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Oikos OIK-01613

Mello, M. A. R., Rodrigues, F. A., Costa, L.

F., Kissling, W. D., Şekercioğlu, C. H.,

Marquitti, F. M. D. and Kalko, E: K. V. 2014.

Keystone species in seed dispersal networks

are mainly determined by dietary

specialization. – Oikos doi: 10.1111/oik.01613

Appendix 1

Datasets used 1. Bats

i. Faria, D. M. 1996. Uso de recursos alimentares por morcegos filostomídeos

fitófagos na Reserva de Santa Genebra, Campinas, São Paulo. In

Departamento de Zoologia, vol. MSc Campinas: Universidade Estadual de

Campinas.

ii. Garcia, Q. S., Rezende, J. L. and Aguiar, L. M. S. 2000. Seed dispersal by bats

in a disturbed area of southeastern Brazil. – Rev. Biol. Trop. 48: 125–128.

iii. Giannini, N. P. and Kalko, E. K. V. 2004. Trophic structure in a large

assemblage of phyllostomid bats in Panama. – Oikos 105: 209–220. We also

included additional data for this site acquired after the publication of this

paper.

iv. Gorchov, D. L., Cornejo, F., Ascorra, C. F. and Jaramillo, M. 1995. Dietary

overlap between frugivorous birds and bats in the Peruvian Amazon. – Oikos

74: 235–250.

v. Hayashi, M. M. 1996. Morcegos frugívoros em duas áreas alteradas da

fazenda Lageado, Botucatu, Estado de São Paulo. In Instituto de Biociências,

vol. MSc Botucatu: Universidade Estadual Paulista.

vi. Passos, F. C., Silva, W. R., Pedro, W. A. and Bonin, M. R. 2003. Frugivoria

em morcegos (Mammalia, Chiroptera) no Parque Estadual Intervales, sudeste

do Brasil. – Rev. Bras. Zool. 20: 511–517.

vii. Pedro, W. A. 1992. Estrutura de uma taxocenose de morcegos da Reserva do

Panga (Uberlândia, MG), com ênfase nas relações tróficas em Phyllostomidae

(Mammalia: Chiroptera). In Departamento de Zoologia, vol. M.Sc. Campinas:

Universidade Estadual de Campinas.

2. Birds

viii. Carlo, T. A., Collazo, J. A. and Groom, M. J. 2003. Avian fruit preferences

across a Puerto Rican forested landscape: pattern consistency and implications

for seed removal. – Oecologia 134: 119–131. Three bird–fruit networks were

provided by this paper.

ix. Galetti, M. and Pizo, M. A. 1996. Fruit eating birds in a forest fragment

in southeastern Brazil. – Ararajuba 4: 71–79.

x. Kantak, G. E. 1979. Observations on some fruit-eating birds in Mexico. – Auk

96: 183–186.

xi. Snow, B. K. and Snow, D. W. 1971. The feeding ecology of tanagers and

honeycreepers in Trinidad. – Auk 88: 291–322.

xii. Wheelwright, N. T., Haber, W. A., Murray, K. G. and Guindon, C. 1984.

Tropical fruit-eating birds and their food plants: a survey of a Costa Rican lower

montane forest. – Biotropica 16: 173–192.

1

Appendix 2

Accessibility in networks Outward accessibility

Mutualistic networks are typical examples of complex systems, since the interactionof animals

and plants creates a complex structure with several elements and connections. The relative

importance of a given species for the whole structure of its network can be estimated by

analyzing its potential to affect or be affected by other species. Technically, the importance of a

species can be quantified by its relative position in the network. For instance, if a frugivore

occupies a central position in its network, it has higher potential to affect the other frugivores,

with which it overlaps niches. In general, if a frugivore occupies a central position in the

network, it means that this species is fundamental for the propagation of information throughout

the network (e.g., mutualistic services or coevolutionary pressures).

In the case of seed dispersal networks, such a highly accessible frugivore could be one

major driver of coevolutionary change among several plants and animals (for an example of

coevolutionary changes dependent on network structure, see Guimarães Jr et al. 2011).

Overlap in seed dispersal of a given plant species represents overlap in functional roles, the

main topic of our study.

The potential of a given species to propagate information throughout the network can be

assessed as its level of accessibility, which can be quantified as its outward accessibility, which

is a measurement based on the concept of self-avoiding random walks (Travençolo and Costa

2008). A walk is a sequence of species (i.e. vertices) and interactions (i.e, edges) in a network.

Self-avoiding walks are walks that do not repeat any species or interactions. Thus, self-avoiding

random walks involve agents moving throughout a network without visiting any species more

than once. While walks can generate sequences of species with unlimited length, self-avoiding

random walks in finite-sized networks necessarily generate paths of limited lengths. This

happens because traditional random walks yield highly redundant paths of infinite length

(implied by repetitions of the same interactions). Therefore, self-avoiding random walks are

more dependent on network structure than traditional random walks and therefore are able to

capture specific structural patterns in networks. In the case of a seed dispersal network, the

pattern of random walks may be used as a surrogate for the structure of coevolutionary change

in the system, or the structure of the ecosystem services associated with seed dispersal. Figure

A1 presents an example of a traditional random walk and a self- avoiding random walk.

Observe that while in (a) the walk can generate a sequence of species of unlimited length, in (b)

the path is limited since species 2 cannot be visited more than once and the walk cannot

2

proceed further from species 5.

Figure A1. Example of (a) traditional random walks and (b) self-avoiding random

walks. While in (a) the length of the walk can be unlimited, in (b) none species can be

visited more than once, which results in limited paths. In fact, in (b) the walk cannot

proceed from species 5, since the species 2 has already been visited during the self-

avoiding random walk. On the other hand, in case (a), the walk can visit a species more

than once. Note that at each step, the next species is selected randomly.

During a random walk, the next species to be visited is selected at random, i.e. without any

preferential rule (Rodrigues and Costa 2009). This way, starting from a species i, the choice of

the next species is made by taking into account the neighbors of i that have not been visited yet,

and which are selected with uniform probabilities. Figure A2(a) illustrates the concept of

outward probability. The probability of arriving at a species i after the moving agent started at

species j, h steps distant from i, is given by the respective probability of transition, henceforth

expressed as Ph(j,i). These transition probabilities can be progressively calculated by dividing

the probability Ph−1(i,k), where k is connected to i and j, by the number of neighbors of k that

have not been visited yet. For instance, in Fig. A2(b), the probability to go from species 1 to

species 4 is equal to P3(1,4) = 1/6 (see the explanation in the subtitle of this figure).

3

Figure 2. (a) Example showing the calculation of transition probability. The

probability of going from species 1 to 2, P(1,2), is given by 1 divided by the

number of neighbors of species 1, i.e. P(1,2) = 1/2. Similarly, to go from 2 to 3,

the probability is given by P(1,2) divided by 3, i.e. the number of species

connected to species 2, excluding species 1, which has already been visited. The

other probabilities are calculated in the same way. (b) The probability to go from

species 1 to 4, taking into account paths of length three, is equal to P3(1,4) =

((((1/2)/3)/1)/1) = 1/6. Note that the walk starts in species 1 and moves to

species 2 with probability 1/2, and thus P1(1,2) = 1/2. In next walk, an agent

visits species 3 with probability 1/3, since there are three species connected to

species 3 that have not been visited yet,; therefore, P2(1,3) = (1/2) /3. Finally, the

agent moves to species 4 with probability 1, resulting in P3(1,4) = (1/6)/1 = 1/6.

From the concept of probability of transition, it is possible to define the outward

accessibility measurement (Travençolo and Costa 2008, Travençolo et al. 2009, Rodrigues

and Costa 2010), which quantifies the effectiveness of a species i in accessing all the other

species in a network under self-avoiding random walks with respect to growing number of

steps h. The outward accessibility of species i after h steps is defined as

Ω (i) = exp(Eh (i))

h N − 1

where N is the number of species in the network and E(i) is the entropy of the non-zero

probability Ph(i,j), i.e.

Eh (i) = − ∑ Ph (i, j) log(Ph (i, j)) .

j , j≠i ,Ph(i , j )≠0

4

Entropy reflects the uniformity of distribution of a set of values, reaching its maximal value of

zero when all data values are equal to one another, while its smallest value is obtained when all

data values are distinct. The outward accessibility decreases when the transition probabilities

become distinct from one another, implying a higher probability of visits to specific species.

Figure A3 illustrates the concept of outward accessibility. Higher accessibility indicates that

the reachable species will be all accessed, on average, after a shorter period of time during the

random walk dynamics. The maximum outward accessibility between a reference species and

those at a distance h happens when all the transition probabilities from the reference species to

the reachable species are equal, as indicated in Fig. aA3(a). In the analyzed networks, bats or

birds with the highest accessibility are in the center of the network, while species with the

smallest values of accessibility are at the interaction (Travençolo et al. 2009).

On the one hand, animals at the periphery of the network generally have a very

narrow diet, being responsible for seed dispersal of a few plants. On the other hand, animals

in the center, i.e. with the highest accessibility values, disperse seeds of many plants.

However, although an animal may be at the periphery of the network, it may be connected to

a very popular plant, i.e. one connected to many other animals. In this case, the animal has a

higher value of accessibility than another peripheral animals connected to plants with a small

number of connections.

5

Figure A3. Two examples of outward accessibility calculation for the species in black. The

species accessed by two interactions (h = 2) from the species in black are indicated in

white color. While in (a) the outward accessibility of the reference species is equal to Ω2 (i)

= 0.667, in (b) it is equal to Ω2 (i) = 0.167.

References Guimarães Jr, P. R., P. Jordano, and J. N. Thompson. 2011. Evolution and coevolution in

mutualistic networks. – Ecol. Lett. 14: 877–885.

Rodrigues, F. A. and L. F. Costa. 2009. Protein lethality investigated in terms of long range

dynamical interactions. – Mol. BioSyst. 5: 385–390.

Rodrigues, F. A. and L. F. Costa. 2010. Comparison of the interactomic networks of different

species in terms of accessibility. – Mol. BioSyst. 6: 224–230.

Travençolo, B. A. N. and L. F. Costa. 2008. Accessibility in complex networks. – Phys.Lett. A

373: 89–95.

Travençolo, B. A. N., Viana, M. P. and Costa, L. F. 2009. Border detection in complex

networks. New Journal of Physics 11:063019.

Appendix 3: Biological attributes and centrality metrics of frugivore species from 15 Neotropical seed dispersal networks.

Species Level of frugivory Body mass Range size Number of networks average min max range average min max range average min max range average min max range average min max rangeBatsArtibeus fimbriatus 3 54 1,485,162 1 0.46 0.46 0.46 0.00 1.00 1.00 1.00 0.00 0.17 0.17 0.17 0.00 0.73 0.73 0.73 0.00 0.84 0.84 0.84 0.00Artibeus gnomus 3 13 10,007,749 1 0.19 0.19 0.19 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.91 0.91 0.91 0.00 0.92 0.92 0.92 0.00Artibeus jamaicensis 3 42 1,932,107 3 0.29 0.04 0.49 0.45 0.86 0.67 1.00 0.33 0.01 0.00 0.04 0.04 0.71 0.50 0.92 0.42 0.82 0.74 0.90 0.16Artibeus lituratus 3 85 14,234,439 8 0.47 0.08 0.86 0.78 0.91 0.75 1.00 0.25 0.11 0.00 0.50 0.50 0.78 0.55 0.94 0.39 0.82 0.65 0.91 0.26Artibeus obscurus 3 35 11,122,497 1 0.07 0.07 0.07 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.95 0.95 0.95 0.00 0.94 0.94 0.94 0.00Artibeus phaeotis 3 12 3,737,172 1 0.17 0.17 0.17 0.00 0.74 0.74 0.74 0.00 0.00 0.00 0.00 0.00 0.61 0.61 0.61 0.00 0.70 0.70 0.70 0.00Artibeus planirostris 3 54 7,905,277 1 0.15 0.15 0.15 0.00 0.86 0.86 0.86 0.00 0.04 0.04 0.04 0.00 0.79 0.79 0.79 0.00 0.86 0.86 0.86 0.00Artibeus watsoni 3 12 3,465,948 1 0.21 0.21 0.21 0.00 0.74 0.74 0.74 0.00 0.00 0.00 0.00 0.00 0.58 0.58 0.58 0.00 0.69 0.69 0.69 0.00Carollia brevicauda 3 14 10,748,131 2 0.42 0.02 0.81 0.79 0.79 0.58 1.00 0.42 0.00 0.00 0.00 0.00 0.61 0.40 0.83 0.43 0.84 0.73 0.94 0.21Carollia castanea 3 15 4,898,800 2 0.47 0.43 0.52 0.09 0.89 0.78 1.00 0.22 0.01 0.00 0.02 0.02 0.67 0.50 0.85 0.35 0.83 0.75 0.92 0.18Carollia perspicillata 3 18 13,795,815 8 0.49 0.15 0.89 0.74 0.85 0.67 1.00 0.33 0.03 0.00 0.10 0.10 0.67 0.47 0.92 0.45 0.85 0.74 0.94 0.20Centurio senex 3 11 5,166 1 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.00 0.05 0.05 0.05 0.00Chiroderma doriae 3 30 2,631,154 3 0.09 0.08 0.12 0.04 0.68 0.60 0.75 0.15 0.00 0.00 0.00 0.00 0.52 0.33 0.67 0.33 0.87 0.86 0.87 0.01Chiroderma villosum 3 24 10,414,022 1 0.21 0.21 0.21 0.00 0.74 0.74 0.74 0.00 0.00 0.00 0.00 0.00 0.61 0.61 0.61 0.00 0.70 0.70 0.70 0.00Glossophaga soricina 2 12 14,858,261 6 0.15 0.06 0.29 0.22 0.72 0.58 0.86 0.27 0.01 0.00 0.04 0.04 0.58 0.29 0.80 0.51 0.84 0.72 0.92 0.21Lampronycteris brachyotis 1 12 3,852,494 1 0.04 0.04 0.04 0.00 0.60 0.60 0.60 0.00 0.00 0.00 0.00 0.00 0.43 0.43 0.43 0.00 0.72 0.72 0.72 0.00Micronycteris hirsuta 1 14 9,073,480 1 0.02 0.02 0.02 0.00 0.58 0.58 0.58 0.00 0.00 0.00 0.00 0.00 0.40 0.40 0.40 0.00 0.73 0.73 0.73 0.00Phylloderma stenops 2 53 10,971,022 1 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.00 0.05 0.05 0.05 0.00Phyllostomus discolor 1 38 12,497,753 2 0.10 0.09 0.12 0.03 0.80 0.78 0.81 0.04 0.01 0.00 0.02 0.02 0.68 0.67 0.70 0.02 0.79 0.74 0.83 0.09Phyllostomus hastatus 1 88 12,629,190 2 0.22 0.06 0.37 0.31 0.85 0.71 1.00 0.29 0.00 0.00 0.00 0.00 0.75 0.60 0.90 0.30 0.80 0.69 0.91 0.21Platyrrhinus helleri 3 14 11,317,986 1 0.07 0.07 0.07 0.00 0.71 0.71 0.71 0.00 0.00 0.00 0.00 0.00 0.60 0.60 0.60 0.00 0.87 0.87 0.87 0.00Platyrrhinus lineatus 3 24 5,807,781 4 0.13 0.13 0.13 0.00 0.74 0.74 0.74 0.00 0.00 0.00 0.00 0.00 0.64 0.64 0.64 0.00 0.70 0.70 0.70 0.00Platyrrhinus recifinus 3 16 2,013,999 1 0.45 0.31 0.57 0.26 0.97 0.88 1.00 0.13 0.11 0.02 0.21 0.19 0.80 0.71 0.92 0.21 0.85 0.83 0.89 0.06Pygoderma bilabiatum 3 18 2,957,239 3 0.10 0.04 0.18 0.13 0.73 0.67 0.78 0.11 0.00 0.00 0.00 0.00 0.62 0.50 0.68 0.18 0.86 0.84 0.89 0.05Rhinophylla pumilio 3 10 8,332,336 1 0.26 0.26 0.26 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.89 0.89 0.89 0.00 0.91 0.91 0.91 0.00Sturnira lilium 3 21 15,288,792 7 0.58 0.22 0.92 0.70 0.90 0.63 1.00 0.38 0.07 0.00 0.17 0.17 0.74 0.38 0.89 0.52 0.87 0.77 0.97 0.20Sturnira tildae 3 24 10,660,604 1 0.13 0.13 0.13 0.00 0.75 0.75 0.75 0.00 0.02 0.02 0.02 0.00 0.62 0.62 0.62 0.00 0.79 0.79 0.79 0.00Trinycteris nicefori 1 8 4,254,081 1 0.02 0.02 0.02 0.00 0.54 0.54 0.54 0.00 0.00 0.00 0.00 0.00 0.30 0.30 0.30 0.00 0.75 0.75 0.75 0.00Uroderma bilobatum 3 18 12,793,922 2 0.29 0.26 0.32 0.06 0.85 0.71 1.00 0.29 0.00 0.00 0.00 0.00 0.73 0.55 0.91 0.36 0.81 0.71 0.91 0.20Vampyressa nymphaea 3 14 248,097 1 0.23 0.23 0.23 0.00 0.74 0.74 0.74 0.00 0.00 0.00 0.00 0.00 0.60 0.60 0.60 0.00 0.70 0.70 0.70 0.00Vampyressa pusilla 3 9 1,111,685 3 0.12 0.07 0.15 0.08 0.65 0.56 0.71 0.16 0.00 0.00 0.00 0.00 0.44 0.20 0.60 0.40 0.80 0.67 0.98 0.31Vampyrodes caraccioli 3 39 8,343,619 1 0.23 0.23 0.23 0.00 0.86 0.86 0.86 0.00 0.04 0.04 0.04 0.00 0.70 0.70 0.70 0.00 0.72 0.72 0.72 0.00

BirdsAmazona albifrons 2 191 544,365 1 0.60 0.60 0.60 0.00 0.93 0.93 0.93 0.00 0.00 0.00 0.00 0.00 0.89 0.89 0.89 0.00 0.95 0.95 0.95 0.00Aratinga astec 3 77 539,144 1 0.60 0.60 0.60 0.00 0.93 0.93 0.93 0.00 0.00 0.00 0.00 0.00 0.89 0.89 0.89 0.00 0.95 0.95 0.95 0.00Atlapetes gutturalis 1 34 255,822 1 0.04 0.04 0.04 0.00 0.95 0.95 0.95 0.00 0.00 0.00 0.00 0.00 0.58 0.58 0.58 0.00 0.81 0.81 0.81 0.00Aulacorhynchus prasinus 3 170 995,922 1 0.57 0.57 0.57 0.00 1.00 1.00 1.00 0.00 0.01 0.01 0.01 0.00 0.85 0.85 0.85 0.00 0.87 0.87 0.87 0.00Catharus ustulatus 1 31 19,298,007 1 0.08 0.08 0.08 0.00 0.95 0.95 0.95 0.00 0.00 0.00 0.00 0.00 0.75 0.75 0.75 0.00 0.89 0.89 0.89 0.00Chamaepetes unicolor 3 1135 15,573 1 0.15 0.15 0.15 0.00 0.95 0.95 0.95 0.00 0.00 0.00 0.00 0.00 0.51 0.51 0.51 0.00 0.81 0.81 0.81 0.00Chiroxiphia caudata 3 26 1,459,528 1 0.53 0.53 0.53 0.00 0.91 0.91 0.91 0.00 0.15 0.15 0.15 0.00 0.68 0.68 0.68 0.00 0.74 0.74 0.74 0.00Chiroxiphia linearis 3 18 101,722 1 0.22 0.22 0.22 0.00 0.98 0.98 0.98 0.00 0.00 0.00 0.00 0.00 0.77 0.77 0.77 0.00 0.85 0.85 0.85 0.00Chlorophanes spiza 2 17 7,921,081 1 0.30 0.30 0.30 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.93 0.93 0.93 0.00 0.95 0.95 0.95 0.00Chlorophonia callophrys 3 25 17,430 1 0.08 0.08 0.08 0.00 0.95 0.95 0.95 0.00 0.00 0.00 0.00 0.00 0.84 0.84 0.84 0.00 0.88 0.88 0.88 0.00Chlorospingus ophthalmicus 1 18 582,194 1 0.17 0.17 0.17 0.00 1.00 1.00 1.00 0.00 0.01 0.01 0.01 0.00 0.55 0.55 0.55 0.00 0.80 0.80 0.80 0.00Coereba flaveola 1 9 10,807,311 5 0.21 0.08 0.44 0.36 0.83 0.62 1.00 0.38 0.06 0.00 0.25 0.25 0.65 0.38 0.94 0.56 0.76 0.65 0.95 0.30Columba fasciata 3 345 3,429,324 1 0.07 0.07 0.07 0.00 0.98 0.98 0.98 0.00 0.00 0.00 0.00 0.00 0.79 0.79 0.79 0.00 0.88 0.88 0.88 0.00Columba flavirostris 3 274 927,978 1 0.02 0.02 0.02 0.00 0.85 0.85 0.85 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.50 0.00 0.80 0.80 0.80 0.00Columba squamosa 3 288 202,804 3 0.21 0.03 0.40 0.37 0.78 0.66 0.85 0.19 0.04 0.00 0.10 0.10 0.51 0.31 0.68 0.37 0.74 0.67 0.81 0.14Conirostrum speciosum 1 8 7,569,058 1 0.03 0.03 0.03 0.00 0.58 0.58 0.58 0.00 0.00 0.00 0.00 0.00 0.32 0.32 0.32 0.00 0.67 0.67 0.67 0.00Cotinga amabilis 3 71 297,760 1 0.20 0.20 0.20 0.00 0.74 0.74 0.74 0.00 0.00 0.00 0.00 0.00 0.65 0.65 0.65 0.00 0.96 0.96 0.96 0.00Cyanerpes caeruleus 1 12 6,673,613 1 0.20 0.20 0.20 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.91 0.91 0.91 0.00 0.95 0.95 0.95 0.00Cyanerpes cyaneus 2 13 8,491,343 1 0.16 0.16 0.16 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.95 0.95 0.95 0.00 0.96 0.96 0.96 0.00Cyanocorax cristatellus 2 178 2,902,753 1 0.03 0.03 0.03 0.00 0.34 0.34 0.34 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.03 0.00 0.10 0.10 0.10 0.00Cyanocorax yncas 1 72 1,092,574 1 0.60 0.60 0.60 0.00 0.93 0.93 0.93 0.00 0.00 0.00 0.00 0.00 0.89 0.89 0.89 0.00 0.95 0.95 0.95 0.00Cyanocorax yucatanicus 1 112 187,840 1 0.60 0.60 0.60 0.00 0.93 0.93 0.93 0.00 0.00 0.00 0.00 0.00 0.89 0.89 0.89 0.00 0.95 0.95 0.95 0.00Cyclarhis gujanensis 1 29 13,485,664 1 0.06 0.06 0.06 0.00 0.57 0.57 0.57 0.00 0.00 0.00 0.00 0.00 0.28 0.28 0.28 0.00 0.68 0.68 0.68 0.00Dacnis cayana 2 16 12,058,726 2 0.31 0.22 0.40 0.18 0.92 0.84 1.00 0.16 0.02 0.00 0.04 0.04 0.82 0.69 0.94 0.25 0.83 0.71 0.95 0.24Dacnis venusta 3 15 200,593 1 0.02 0.02 0.02 0.00 0.89 0.89 0.89 0.00 0.00 0.00 0.00 0.00 0.82 0.82 0.82 0.00 0.88 0.88 0.88 0.00Dendroica caerulescens 1 9 2,958,275 1 0.03 0.03 0.03 0.00 0.61 0.61 0.61 0.00 0.00 0.00 0.00 0.00 0.42 0.42 0.42 0.00 0.69 0.69 0.69 0.00Dendroica tigrina 1 10 5,707,518 1 0.06 0.06 0.06 0.00 0.71 0.71 0.71 0.00 0.01 0.01 0.01 0.00 0.60 0.60 0.60 0.00 0.67 0.67 0.67 0.00Dives dives 2 96 592,173 1 0.60 0.60 0.60 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.96 0.96 0.96 0.00 0.95 0.95 0.95 0.00Elaenia flavogaster 2 25 10,328,043 2 0.08 0.02 0.14 0.12 0.81 0.72 0.91 0.19 0.00 0.00 0.01 0.01 0.68 0.55 0.81 0.26 0.79 0.69 0.89 0.19

Relative Degree Closeness Centrality Betweenness Centrality Accessibility 1 Accessibility 2

Elaenia frantzii 2 18 259,469 1 0.12 0.12 0.12 0.00 1.00 1.00 1.00 0.00 0.01 0.01 0.01 0.00 0.81 0.81 0.81 0.00 0.86 0.86 0.86 0.00Empidonomus varius 1 26 13,109,235 1 0.03 0.03 0.03 0.00 0.56 0.56 0.56 0.00 0.00 0.00 0.00 0.00 0.29 0.29 0.29 0.00 0.70 0.70 0.70 0.00Euphonia affinis 3 9 724,212 1 0.40 0.40 0.40 0.00 0.74 0.74 0.74 0.00 0.00 0.00 0.00 0.00 0.62 0.62 0.62 0.00 0.95 0.95 0.95 0.00Euphonia hirundinacea 3 13 609,540 2 0.32 0.04 0.60 0.56 0.95 0.91 1.00 0.09 0.00 0.00 0.00 0.00 0.87 0.81 0.94 0.13 0.91 0.86 0.95 0.09Euphonia musica 3 13 88,712 3 0.19 0.12 0.28 0.16 0.70 0.68 0.75 0.07 0.01 0.00 0.03 0.03 0.41 0.08 0.65 0.56 0.52 0.08 0.81 0.73Euphonia violacea 3 14 4,921,923 1 0.32 0.32 0.32 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.92 0.92 0.92 0.00 0.95 0.95 0.95 0.00finche 1 0.04 0.04 0.04 0.00 0.58 0.58 0.58 0.00 0.00 0.00 0.00 0.00 0.27 0.27 0.27 0.00 0.82 0.82 0.82 0.00Habia rubica 1 30 5,690,375 1 0.14 0.14 0.14 0.00 0.70 0.70 0.70 0.00 0.01 0.01 0.01 0.00 0.53 0.53 0.53 0.00 0.68 0.68 0.68 0.00Icterus auratus 1 32 115,656 1 0.40 0.40 0.40 0.00 0.93 0.93 0.93 0.00 0.00 0.00 0.00 0.00 0.88 0.88 0.88 0.00 0.95 0.95 0.95 0.00Icterus chrysater 1 48 777,237 1 0.60 0.60 0.60 0.00 0.93 0.93 0.93 0.00 0.00 0.00 0.00 0.00 0.89 0.89 0.89 0.00 0.95 0.95 0.95 0.00Icterus dominicensis 2 37 75,138 2 0.07 0.03 0.12 0.09 0.60 0.55 0.65 0.10 0.00 0.00 0.00 0.00 0.35 0.26 0.44 0.18 0.75 0.68 0.81 0.13Icterus galbula 1 32 12,546,801 1 0.02 0.02 0.02 0.00 0.91 0.91 0.91 0.00 0.00 0.00 0.00 0.00 0.61 0.61 0.61 0.00 0.81 0.81 0.81 0.00Icterus gularis 2 57 559,672 1 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.94 0.94 0.94 0.00 0.95 0.95 0.95 0.00Icterus mesomelas 1 55 995,721 1 0.40 0.40 0.40 0.00 0.93 0.93 0.93 0.00 0.00 0.00 0.00 0.00 0.88 0.88 0.88 0.00 0.95 0.95 0.95 0.00Icterus prosthemelas 1 38 436,755 1 0.40 0.40 0.40 0.00 0.93 0.93 0.93 0.00 0.00 0.00 0.00 0.00 0.88 0.88 0.88 0.00 0.95 0.95 0.95 0.00Loxigilla portoricensis 2 29 8,954 3 0.40 0.20 0.56 0.36 0.81 0.56 1.00 0.44 0.07 0.00 0.13 0.13 0.70 0.58 0.80 0.22 0.77 0.70 0.82 0.12Manacus manacus 3 16 7,489,531 1 0.47 0.47 0.47 0.00 0.78 0.78 0.78 0.00 0.03 0.03 0.03 0.00 0.59 0.59 0.59 0.00 0.70 0.70 0.70 0.00Margarops fuscatus 2 75 20,307 3 0.14 0.12 0.16 0.04 0.51 0.00 0.79 0.79 0.01 0.00 0.01 0.01 0.67 0.58 0.80 0.22 0.73 0.67 0.82 0.15Megarynchus pitangua 1 68 13,242,973 1 0.43 0.06 0.80 0.74 0.96 0.93 1.00 0.07 0.00 0.00 0.00 0.00 0.83 0.74 0.92 0.18 0.91 0.87 0.95 0.08Melanerpes aurifrons 2 81 1,393,746 1 0.04 0.04 0.04 0.00 0.93 0.93 0.93 0.00 0.00 0.00 0.00 0.00 0.82 0.82 0.82 0.00 0.88 0.88 0.88 0.00Melanerpes portoricensis 1 59 8,923 1 0.04 0.04 0.04 0.00 0.95 0.95 0.95 0.00 0.00 0.00 0.00 0.00 0.73 0.73 0.73 0.00 0.89 0.89 0.89 0.00Melanerpes pygmaeus 2 40 126,068 1 0.80 0.80 0.80 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.95 0.95 0.95 0.00 0.95 0.95 0.95 0.00Melozone leucotis 1 43 24,747 1 0.05 0.05 0.05 0.00 0.95 0.95 0.95 0.00 0.00 0.00 0.00 0.00 0.77 0.77 0.77 0.00 0.89 0.89 0.89 0.00Mionectes olivaceus 3 14 744,817 1 0.08 0.04 0.12 0.08 0.55 0.48 0.63 0.14 0.00 0.00 0.00 0.00 0.45 0.40 0.50 0.10 0.77 0.74 0.80 0.06Molothrus bonariensis 1 48 13,410,873 2 0.05 0.05 0.05 0.00 0.85 0.85 0.85 0.00 0.00 0.00 0.00 0.00 0.78 0.78 0.78 0.00 0.89 0.89 0.89 0.00Momotus momota 1 123 9,751,475 1 0.30 0.30 0.30 0.00 1.00 1.00 1.00 0.00 0.01 0.01 0.01 0.00 0.87 0.87 0.87 0.00 0.87 0.87 0.87 0.00Myadestes melanops 3 32 31,920 1 0.05 0.03 0.08 0.05 0.64 0.55 0.73 0.17 0.01 0.00 0.02 0.02 0.45 0.26 0.63 0.36 0.72 0.68 0.77 0.09Myiarchus antillarum 1 24 9,177 2 0.03 0.03 0.03 0.00 0.56 0.56 0.56 0.00 0.00 0.00 0.00 0.00 0.29 0.29 0.29 0.00 0.70 0.70 0.70 0.00Myiarchus ferox 1 28 11,854,104 1 0.05 0.05 0.05 0.00 0.89 0.89 0.89 0.00 0.00 0.00 0.00 0.00 0.65 0.65 0.65 0.00 0.89 0.89 0.89 0.00Myiarchus tuberculifer 1 20 10,571,115 1 0.04 0.04 0.04 0.00 0.95 0.95 0.95 0.00 0.00 0.00 0.00 0.00 0.84 0.84 0.84 0.00 0.88 0.88 0.88 0.00Myiodynastes luteiventris 2 48 2,795,143 1 0.14 0.14 0.14 0.00 0.78 0.78 0.78 0.00 0.08 0.08 0.08 0.00 0.63 0.63 0.63 0.00 0.76 0.76 0.76 0.00Myiodynastes maculatus 1 46 14,563,725 1 0.06 0.06 0.06 0.00 0.58 0.58 0.58 0.00 0.00 0.00 0.00 0.00 0.30 0.30 0.30 0.00 0.67 0.67 0.67 0.00Myiophobus fasciatus 1 10 10,232,440 1 0.32 0.05 0.60 0.55 0.93 0.87 1.00 0.13 0.00 0.00 0.00 0.00 0.82 0.71 0.94 0.23 0.89 0.84 0.95 0.11Myiozetetes similis 1 29 10,241,653 2 0.31 0.04 0.59 0.55 0.78 0.75 0.81 0.06 0.02 0.00 0.05 0.05 0.61 0.56 0.67 0.11 0.76 0.73 0.80 0.07Nesospingus speculiferus 1 33 8,774 2 0.40 0.40 0.40 0.00 0.93 0.93 0.93 0.00 0.00 0.00 0.00 0.00 0.89 0.89 0.89 0.00 0.95 0.95 0.95 0.00Ortalis vetula 2 550 603,240 1 0.03 0.03 0.03 0.00 0.49 0.49 0.49 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.00 0.72 0.72 0.72 0.00Penelope superciliaris 3 967 5,614,374 1 0.08 0.08 0.08 0.00 0.95 0.95 0.95 0.00 0.00 0.00 0.00 0.00 0.78 0.78 0.78 0.00 0.85 0.85 0.85 0.00Phainoptila melanoxantha 3 58 6,565 1 0.24 0.24 0.24 0.00 0.87 0.87 0.87 0.00 0.00 0.00 0.00 0.00 0.77 0.77 0.77 0.00 0.87 0.87 0.87 0.00Pharomachrus mocinno 3 199 149,079 1 0.02 0.02 0.02 0.00 0.74 0.74 0.74 0.00 0.00 0.00 0.00 0.00 0.81 0.81 0.81 0.00 0.87 0.87 0.87 0.00Pheucticus ludovicianus 1 45 9,099,498 1 0.04 0.04 0.04 0.00 0.98 0.98 0.98 0.00 0.00 0.00 0.00 0.00 0.78 0.78 0.78 0.00 0.86 0.86 0.86 0.00Piculus rubiginosus 1 68 2,373,486 1 0.03 0.03 0.03 0.00 0.49 0.49 0.49 0.00 0.00 0.00 0.00 0.00 0.19 0.19 0.19 0.00 0.62 0.62 0.62 0.00Pipraeidea melanonota 1 20 2,111,515 1 0.02 0.02 0.02 0.00 0.91 0.91 0.91 0.00 0.00 0.00 0.00 0.00 0.29 0.29 0.29 0.00 0.77 0.77 0.77 0.00Piranga rubra 1 29 8,739,608 1 0.30 0.19 0.40 0.21 0.85 0.70 1.00 0.30 0.02 0.00 0.03 0.03 0.73 0.52 0.95 0.43 0.83 0.71 0.95 0.25Pitangus sulphuratus 1 60 16,134,401 2 0.18 0.18 0.18 0.00 0.95 0.95 0.95 0.00 0.00 0.00 0.00 0.00 0.80 0.80 0.80 0.00 0.89 0.89 0.89 0.00Procnias tricarunculatus 3 178 149,792 1 0.08 0.08 0.08 0.00 0.63 0.63 0.63 0.00 0.00 0.00 0.00 0.00 0.83 0.83 0.83 0.00 0.88 0.88 0.88 0.00Psilorhinus morio 1 211 675,237 1 0.80 0.80 0.80 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.95 0.95 0.95 0.00 0.95 0.95 0.95 0.00Pteroglossus torquatus 3 224 868,009 1 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.94 0.94 0.94 0.00 0.95 0.95 0.95 0.00Ramphastos sulfuratus 3 431 679,925 2 0.45 0.09 0.80 0.71 0.90 0.80 1.00 0.20 0.00 0.00 0.00 0.00 0.80 0.68 0.92 0.24 0.90 0.84 0.95 0.11Ramphastos toco 3 633 4,259,458 1 0.06 0.06 0.06 0.00 0.52 0.52 0.52 0.00 0.06 0.06 0.06 0.00 0.13 0.13 0.13 0.00 0.32 0.32 0.32 0.00Ramphocelus carbo 2 25 10,498,840 2 0.35 0.17 0.54 0.37 0.86 0.72 1.00 0.28 0.01 0.00 0.01 0.01 0.72 0.57 0.86 0.29 0.82 0.69 0.96 0.27Saltator atriceps 2 85 710,964 1 0.80 0.80 0.80 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.95 0.95 0.95 0.00 0.95 0.95 0.95 0.00Saltator similis 2 48 3,043,354 1 0.28 0.28 0.28 0.00 0.76 0.76 0.76 0.00 0.02 0.02 0.02 0.00 0.57 0.57 0.57 0.00 0.68 0.68 0.68 0.00Semnornis frantzii 3 61 15,874 1 0.18 0.18 0.18 0.00 0.87 0.87 0.87 0.00 0.00 0.00 0.00 0.00 0.86 0.86 0.86 0.00 0.88 0.88 0.88 0.00Sirystes sibilator 1 33 6,958,018 1 0.03 0.03 0.03 0.00 0.57 0.57 0.57 0.00 0.00 0.00 0.00 0.00 0.29 0.29 0.29 0.00 0.67 0.67 0.67 0.00Spindalis portoricensis 3 31 8,774 3 0.35 0.08 0.52 0.44 0.74 0.56 0.86 0.29 0.03 0.00 0.08 0.08 0.42 0.08 0.59 0.50 0.76 0.71 0.86 0.15Tachyphonus coronatus 2 28 1,359,308 1 0.36 0.36 0.36 0.00 0.78 0.78 0.78 0.00 0.03 0.03 0.03 0.00 0.26 0.26 0.26 0.00 0.71 0.71 0.71 0.00Tachyphonus luctuosus 1 14 7,131,746 1 0.08 0.08 0.08 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.96 0.96 0.96 0.00 0.97 0.97 0.97 0.00Tachyphonus rufus 2 32 5,369,294 1 0.50 0.50 0.50 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.92 0.92 0.92 0.00 0.95 0.95 0.95 0.00Tangara cayana 3 19 5,675,416 1 0.08 0.08 0.08 0.00 0.57 0.57 0.57 0.00 0.00 0.00 0.00 0.00 0.29 0.29 0.29 0.00 0.70 0.70 0.70 0.00Tangara dowii 3 20 12,084 1 0.08 0.08 0.08 0.00 0.72 0.72 0.72 0.00 0.00 0.00 0.00 0.00 0.59 0.59 0.59 0.00 0.86 0.86 0.86 0.00Tangara guttata 3 17 365,499 1 0.20 0.20 0.20 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.94 0.94 0.94 0.00 0.95 0.95 0.95 0.00Tangara gyrola 2 21 3,988,518 1 0.52 0.52 0.52 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.94 0.94 0.94 0.00 0.95 0.95 0.95 0.00Tangara icterocephala 3 21 74,183 1 0.02 0.02 0.02 0.00 0.89 0.89 0.89 0.00 0.00 0.00 0.00 0.00 0.44 0.44 0.44 0.00 0.80 0.80 0.80 0.00Tangara mexicana 2 19 7,172,986 1 0.44 0.44 0.44 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.91 0.91 0.91 0.00 0.95 0.95 0.95 0.00Thlypopsis sordida 1 16 6,836,055 1 0.08 0.08 0.08 0.00 0.67 0.67 0.67 0.00 0.00 0.00 0.00 0.00 0.59 0.59 0.59 0.00 0.72 0.72 0.72 0.00Thraupis episcopus 2 33 7,925,577 2 0.20 0.04 0.36 0.32 0.98 0.95 1.00 0.05 0.00 0.00 0.00 0.00 0.87 0.83 0.92 0.09 0.92 0.89 0.95 0.06Thraupis palmarum 3 35 12,180,145 1 0.36 0.36 0.36 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.92 0.92 0.92 0.00 0.95 0.95 0.95 0.00Thraupis sayaca 3 30 6,747,165 1 0.17 0.17 0.17 0.00 0.74 0.74 0.74 0.00 0.01 0.01 0.01 0.00 0.57 0.57 0.57 0.00 0.69 0.69 0.69 0.00Tiaris bicolor 1 10 262,753 2 0.03 0.03 0.04 0.01 0.38 0.00 0.75 0.75 0.00 0.00 0.00 0.00 0.36 0.05 0.67 0.61 0.42 0.05 0.80 0.74

Tityra cayana 3 70 11,903,938 1 0.03 0.03 0.03 0.00 0.56 0.56 0.56 0.00 0.00 0.00 0.00 0.00 0.52 0.52 0.52 0.00 0.69 0.69 0.69 0.00Tityra semifasciata 3 81 6,170,658 2 0.44 0.08 0.80 0.72 0.98 0.95 1.00 0.05 0.00 0.00 0.00 0.00 0.87 0.82 0.92 0.11 0.92 0.89 0.95 0.06Todus mexicanus 1 6 8,774 2 0.03 0.03 0.04 0.01 0.65 0.55 0.75 0.20 0.00 0.00 0.00 0.00 0.46 0.26 0.67 0.40 0.70 0.60 0.80 0.20Trichothraupis melanops 1 22 2,473,265 1 0.25 0.25 0.25 0.00 0.82 0.82 0.82 0.00 0.06 0.06 0.06 0.00 0.48 0.48 0.48 0.00 0.69 0.69 0.69 0.00Trogon aurantiiventris 1 59 27,263 1 0.08 0.08 0.08 0.00 0.91 0.91 0.91 0.00 0.00 0.00 0.00 0.00 0.81 0.81 0.81 0.00 0.85 0.85 0.85 0.00Trogon citreolus 2 83 123,841 1 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.94 0.94 0.94 0.00 0.95 0.95 0.95 0.00Turdus amaurochalinus 2 58 8,249,536 1 0.08 0.08 0.08 0.00 0.66 0.66 0.66 0.00 0.00 0.00 0.00 0.00 0.57 0.57 0.57 0.00 0.69 0.69 0.69 0.00Turdus assimilis 3 69 645,469 1 0.07 0.07 0.07 0.00 0.95 0.95 0.95 0.00 0.00 0.00 0.00 0.00 0.81 0.81 0.81 0.00 0.89 0.89 0.89 0.00Turdus grayi 1 75 1,059,892 1 0.23 0.06 0.40 0.34 0.98 0.95 1.00 0.05 0.00 0.00 0.00 0.00 0.89 0.84 0.95 0.11 0.91 0.88 0.95 0.08Turdus leucomelas 3 61 7,245,055 1 0.03 0.03 0.03 0.00 0.51 0.51 0.51 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.00 0.61 0.61 0.61 0.00Turdus plebejus 3 92 119,284 1 0.26 0.26 0.26 0.00 1.00 1.00 1.00 0.00 0.01 0.01 0.01 0.00 0.84 0.84 0.84 0.00 0.88 0.88 0.88 0.00Turdus plumbeus 2 69 200,530 2 0.12 0.08 0.16 0.08 0.80 0.73 0.88 0.16 0.03 0.02 0.03 0.01 0.65 0.52 0.77 0.25 0.75 0.69 0.80 0.11Turdus rufiventris 2 72 5,028,676 1 0.11 0.11 0.11 0.00 0.63 0.63 0.63 0.00 0.00 0.00 0.00 0.00 0.66 0.66 0.66 0.00 0.69 0.69 0.69 0.00Tyrannus caudifasciatus 1 44 211,091 2 0.03 0.03 0.04 0.01 0.65 0.63 0.66 0.02 0.00 0.00 0.00 0.00 0.47 0.42 0.53 0.11 0.74 0.67 0.80 0.12Tyrannus dominicensis 1 46 1,743,660 3 0.07 0.04 0.12 0.08 0.70 0.63 0.74 0.11 0.02 0.00 0.03 0.03 0.50 0.32 0.66 0.34 0.72 0.67 0.80 0.13Tyrannus melancholicus 1 37 16,509,215 2 0.40 0.19 0.60 0.41 0.87 0.74 1.00 0.26 0.02 0.00 0.03 0.03 0.66 0.38 0.94 0.56 0.82 0.69 0.95 0.26Tyrannus savana 1 29 13,577,002 1 0.06 0.06 0.06 0.00 0.70 0.70 0.70 0.00 0.01 0.01 0.01 0.00 0.58 0.58 0.58 0.00 0.74 0.74 0.74 0.00Vireo altiloquus 2 17 4,884,013 3 0.28 0.04 0.41 0.37 0.85 0.60 1.00 0.40 0.09 0.00 0.15 0.15 0.70 0.63 0.80 0.18 0.76 0.72 0.80 0.08Vireo flavirostris 1 18 5,030,826 1 0.06 0.06 0.06 0.00 0.59 0.59 0.59 0.00 0.00 0.00 0.00 0.00 0.35 0.35 0.35 0.00 0.66 0.66 0.66 0.00Vireo latimeri 1 11 6,996 2 0.03 0.03 0.04 0.01 0.59 0.55 0.63 0.08 0.00 0.00 0.00 0.00 0.38 0.26 0.50 0.24 0.67 0.60 0.74 0.14Vireo olivaceus 2 17 24,811,474 1 0.17 0.17 0.17 0.00 0.78 0.78 0.78 0.00 0.03 0.03 0.03 0.00 0.65 0.65 0.65 0.00 0.71 0.71 0.71 0.00Zenaida asiatica 1 139 3,317,961 1 0.03 0.03 0.03 0.00 0.55 0.55 0.55 0.00 0.00 0.00 0.00 0.00 0.26 0.26 0.26 0.00 0.60 0.60 0.60 0.00Zenaida zenaida 2 156 230,326 1 0.04 0.04 0.04 0.00 0.54 0.54 0.54 0.00 0.00 0.00 0.00 0.00 0.13 0.13 0.13 0.00 0.87 0.87 0.87 0.00

Faria 1996 (bats)

Garcia 2000 (bats)

Appendix 4: Bipartite graphs of the 15 Neotropical seed dispersal networks studied. Green vertices represent plant species, yellow vertices represent frugivore species, and lines (edges) represent interactions of frugivory recorded in the field. Species names were coded using the first three letters of the genus and and the first three letters of the epithet. Full names are presented in Appendix 3.

Gorchov 1995 (bats)

Faria 1996 (bats)

Garcia 2000 (bats)

Gorchov 1995 (bats)

Pedro 1992 (bats)

Silveira 2006 (bats)

Carlo 2003 CACG (birds)

Carlo 2003 CACI (birds)

Carlo 2003 CACO (birds)

Galetti 1996 (birds)

Snow 1971 (birds)

Kantak 1979 (birds)

Wheelwright 1982 (birds)

Faria 1996 (bats)

Appendix   5:   Unipar.te   graphs   of   accessibility   for   the   15   Neotropical   seed   dispersal  networks   studied.   The   graphs   represent   niche   overlap   between   frugivores:   each   circle  represents  a  frugivore  species,  links  represent  overlap  in  the  plant  species  dispersed,  and  the  shades  of  grey  used  for  circles  are  propor.onal  to  the  scores  of  accessibility  (to  direct  and  indirect  neighbors)  measured  for  each  frugivore  species.  

Garcia 2000 (bats)

Gorchov 1995 (bats)

Hayashi 1996 (bats)

Kalko BCI (bats)

Passos 2003 (bats)

Pedro 1992 (bats)

Silveira 2006 (bats)

Carlo 2003 CACG (birds)

Carlo 2003 CACO (birds)

Carlo 2003 CACI (birds)

Galetti 1996 (birds)

Snow 1971 (birds)

Kantak 1979 (birds)

Wheelwright 1982 (birds)

Appendix 6: Results of the multivariate generalized linear mixed-effects model using centrality metrics as response variables (relative

degree = kr, closeness centrality = CC, betweenness centrality - BC, accessibility 1 – A1, and accessibility 2 – A2), disperser group (bats

and birds) and level of specialization in frugivory as fixed effects, and body mass (g) and range size (km2) as covariates. Significance

levels were estimated per bootstrapping (10,000 randomizations).

Source Dependent Variable

Type III Sum of Squares df

Mean Square F Sig.

Partial Eta Squared

Noncent. Parameter

Observed Power

Corrected model

kr 0.82 7 0.12 2.67 0.01 0.12 18.72 0.89 CC 0.58 7 0.08 2.57 0.02 0.11 18.01 0.88 BC 0.01 7 0.00 1.63 0.13 0.07 11.43 0.66 A1 0.64 7 0.09 1.80 0.09 0.08 12.60 0.71 A2 0.31 7 0.04 1.96 0.06 0.09 13.74 0.75

Intercept kr 1.56 1 1.56 35.36 0.00 0.20 35.36 1.00 CC 14.62 1 14.62 451.92 0.00 0.76 451.92 1.00 BC 0.00 1 0.00 1.79 0.18 0.01 1.79 0.26 A1 10.24 1 10.24 200.23 0.00 0.58 200.23 1.00 A2 14.95 1 14.95 664.23 0.00 0.82 664.23 1.00

group kr 0.05 1 0.05 1.24 0.27 0.01 1.24 0.20 CC 0.38 1 0.38 11.78 0.00 0.08 11.78 0.93 BC 0.00 1 0.00 0.02 0.90 0.00 0.02 0.05 A1 0.26 1 0.26 5.04 0.03 0.03 5.04 0.61 A2 0.22 1 0.22 9.81 0.00 0.06 9.81 0.88

frugivory kr 0.14 2 0.07 1.60 0.20 0.02 3.21 0.34 CC 0.28 2 0.14 4.28 0.02 0.06 8.56 0.74 BC 0.00 2 0.00 2.24 0.11 0.03 4.47 0.45 A1 0.21 2 0.11 2.08 0.13 0.03 4.17 0.42 A2 0.19 2 0.09 4.22 0.02 0.06 8.43 0.73

group * frugivory

kr 0.13 2 0.07 1.51 0.22 0.02 3.02 0.32 CC 0.33 2 0.17 5.13 0.01 0.07 10.25 0.82 BC 0.00 2 0.00 1.23 0.30 0.02 2.46 0.26

A1 0.24 2 0.12 2.31 0.10 0.03 4.62 0.46 A2 0.18 2 0.09 3.93 0.02 0.05 7.86 0.70

mass kr 0.00 1 0.00 0.10 0.75 0.00 0.10 0.06 CC 0.00 1 0.00 0.00 0.97 0.00 0.00 0.05 BC 0.00 1 0.00 0.00 0.97 0.00 0.00 0.05 A1 0.07 1 0.07 1.38 0.24 0.01 1.38 0.21 A2 0.02 1 0.02 0.98 0.32 0.01 0.98 0.17

range kr 0.17 1 0.17 3.77 0.05 0.03 3.77 0.49 CC 0.04 1 0.04 1.26 0.26 0.01 1.26 0.20 BC 0.00 1 0.00 1.03 0.31 0.01 1.03 0.17 A1 0.06 1 0.06 1.12 0.29 0.01 1.12 0.18 A2 0.00 1 0.00 0.15 0.70 0.00 0.15 0.07