-a photocatalytic degradation of bisphenol-a using a ... · 10 w-blacklight lamp(360 nm: phillips,...

8
493 HWAHAK KONGHAK Vol. 39, No. 4, August, 2001, pp. 493-500 (Journal of the Korean Institute of Chemical Engineers) -A * ** *** *( )EC-Tech ** *** (2001 2 28 , 2001 6 25 ) Photocatalytic Degradation of Bisphenol-A Using A Rotating Photocatalytic-Oxidation Drum Reactor Hee-Jong Son , Dong-Chun Ryu, Young-Ung Kim*, Kyu-Kap Cho** and Seong-Yun Kim*** Water Quality Institute, Waterworks Headquarter, Busan 621-813, Korea *Institute of Environmental & Biological Technology, EC-Tech. Co. Ltd., Busan 609-815, Korea **Dept. of Plant, Environment, Research Institute, Hyundai MOBIS, Kyunggido 449-910, Korea ***RLNR, Tokyo Institute of Technology, Tokyo 152-8550, Japan (Received 28 February 2001; accepted 25 June 2001) -A . TiO 2 5 285 nm, 10 445 nm . -A TiO 2 , 90 14% , . -A 5.6, 9.3 , 4, 6 W/L 86, 97% . , , 30, 60 rpm 90 97% , 120 rpm 99%, 240 rpm -A 40 , TOC, UV-254 60 . , -A TiO 2 10 , (6 W/L), 240 rpm , -A k t 1/2 0.139 min -1 4.99 min . Abstract - Photocatalytic removal of bisphenol-A with a rotating photocatalytic oxidation drum(RPODrum) reactor has been investigated in various conditions. It has been found that TiO 2 thin film thickness of 455 nm is more effective than 285 nm in the photocatalytic activity. A germicidal lamp as a light source was more effective than a blacklight lamp. In addition, the germicidal lamp with the light intensity of 6 W/L has increased the removal efficiency by 13% compared to that with 4 W/ L lamp. The blowing of air and N 2 gas at the flow of 0.5 L/min has not further increased the removal efficiency of bisphenol- A. To reduce the retention time of solution, higher rotation speed of RPO drum was needed and the most efficient rotating- speed was 240 rpm. The reaction rate constant k, and the half-life t 1/2 in the bisphenol-A removal with the most efficiently RPO drum reactor system have been calculated to be 0.139 min -1 and 4.99 min, respectively. Key words: UV/TiO 2 , Rotating Photocatalytic-Oxidation Drum(RPODrum) Reactor, Bisphenol-A, Kinetic Constant, Half-time E-mail: [email protected]

Upload: nguyencong

Post on 22-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

HWAHAK KONGHAK Vol. 39, No. 4, August, 2001, pp. 493-500(Journal of the Korean Institute of Chemical Engineers)

�� ��� ��� �� ��� ����-A ��

���†������*��� **����***

����� ����� �� ��*(�)EC-Tech ������ ��

**����� �� �� ��� �� ��***!�"�# �$%"# ��

(2001& 2' 28( )�, 2001& 6' 25( *+)

Photocatalytic Degradation of Bisphenol-A Using A Rotating Photocatalytic-Oxidation Drum Reactor

Hee-Jong Son†, Dong-Chun Ryu, Young-Ung Kim*, Kyu-Kap Cho** and Seong-Yun Kim***

Water Quality Institute, Waterworks Headquarter, Busan 621-813, Korea *Institute of Environmental & Biological Technology, EC-Tech. Co. Ltd., Busan 609-815, Korea**Dept. of Plant, Environment, Research Institute, Hyundai MOBIS, Kyunggido 449-910, Korea

***RLNR, Tokyo Institute of Technology, Tokyo 152-8550, Japan(Received 28 February 2001; accepted 25 June 2001)

� �

� ����� �� � � � ����� ���� ��� ���� ��� ! "#$ %&'(-A )*+,- �

.�. TiO2 /012� 34 567 89:���� /012; <;=� 3> 567 ?@� 5� /0� 7A 285 nm, 10

� /0� 7A�� 445 nmB CDE�. %&'(-A )*�FG TiO2 /0HI� �J KG �L, MN>�O PQ RS7

��T� 7A UVWX 90Y Z[ 14% \] )*^_`a, /012; <;b2c )*de] <;�.�. �f7 gh i

�f7 jk� 34 %&'(-A7 )* �F��� ;W� PQ� l��.- m n� MN>�O PQo Rpqrs PQ

� �f`B l��.- m7 )*t]; 5.6, 9.3u \] v4 w`B CDC Rpqrs PQ7 de� ;� xG w`B

CDE`a, Rpqrs PQ7 �jk; 4, 6 W/LB xy#2c )*e] 86, 97%B %z�� <;�.�. {�, �UV d

e- x�k |�� }ko #~� ��� �L 7 ��� 34 }k ��� �Y�� )*e�� :�; �_`a,

7 ��t]; 30, 60 rpm̀ B 90Y Z[ UVW 97%7 )*e- n.`a, 120 rpmG 99%, 240 rpm̀B ��W7 %&

'(-A� 40Y�� �� )*^_`a, TOC, UV-2547 �L] *7 60Y�� )*^_�. 3>�, � ��7 +,����

%&'(-A7 v � ��� )*� TiO2 /012 10�, �f7 gh� Rpqrs PQ� l��� �f jk� ���

(6 W/L), 7 ��t]� 240 rpm̀ B �.- m; ;� de��_`a, �m7 %&'(-A )* t]�2 ko U�k

t1/2� 0.139 min−1o 4.99 min�_�.

Abstract − Photocatalytic removal of bisphenol-A with a rotating photocatalytic oxidation drum(RPODrum) reactor has

been investigated in various conditions. It has been found that TiO2 thin film thickness of 455 nm is more effective than 285

nm in the photocatalytic activity. A germicidal lamp as a light source was more effective than a blacklight lamp. In addition,

the germicidal lamp with the light intensity of 6 W/L has increased the removal efficiency by 13% compared to that with 4 W/

L lamp. The blowing of air and N2 gas at the flow of 0.5 L/min has not further increased the removal efficiency of bisphenol-A. To reduce the retention time of solution, higher rotation speed of RPO drum was needed and the most efficient rotating-

speed was 240 rpm. The reaction rate constant k, and the half-life t1/2 in the bisphenol-A removal with the most efficiently RPO

drum reactor system have been calculated to be 0.139 min−1 and 4.99 min, respectively.

Key words: UV/TiO2, Rotating Photocatalytic-Oxidation Drum(RPODrum) Reactor, Bisphenol-A, Kinetic Constant, Half-time

†E-mail: [email protected]

493

494 ������������ ����

i

1. � �

�� �����(endocrine disruptor) � �� �� �� ���

�� ���� � ���� ! "# �$ �� %&�' ()

[1, 2]. ����� *+, -$./ 01*+� 2*�3�� 4*5 4

6, 74&2� �89: ���; <, =>? 9�@ A � BC9

: =>? !)' DEF' ()[3]. GH�, 4I -� JKL �M 4

I - ���5 NO, BP, QR, Q>IS5 TN, Q>I TN U5

V�WX Y5 )Z! ;[� \898 �] ^�5 _`? a�b�

�c 4�/ � de��f g hi? jkl, mn ��: O0o

S 46pq Y? rs9�f !).

FtuF vdw -$./ 01*+, x 708 ]�� yzx{ �

����*+, |H}~ �� � �, �x � ��S �t� Y 4

F� $�w)[4]. p ��� �>��� � �, ��, .}��-A,

dibutylphthalate Y5 |H}~5 �� � �� 0 �� �>�:

-$./ 01*+p �� �� �� ��' ()[5]. p� .}

��-A: ��5 '^*� ��; ��� �C� hi? ��l, ��

��, k� p�� �� ���� Y? J�9l, 1997�� ��S

�  ¡��� �}¢�£; <, O���5 pq � [¤Q ¥¡ Y

? J�9: ������� DE¦', n§JW¨ d \©�� ��

Iªp� J�9l, j��� 8O���«¬ =>, JB­ n§� ®

6¯°: ±�� �²³ (). ¡, ´[, µ�¶F*� �>�l

·�Q ¸ p·¹ �$5 -�º»@ -�5 �6BF, ¼½5 B

�«�, 6�>� ¾� ¿p: À�ÁÂÃp¢ QFS �į QF

Y� §ÅÆ (). Ç!, ÈÉÊ, qQ\; <, t�{5 -�º»

� �>�l, �¾Ë> Ì�, k;k�¯5 ÍÎ¥�� JPw)[4].

ÏÐ��"#�, !Ñ; Ï-5 ÒÓ Ñ � g FÔ�� .}��

-A ÕP�Ö)' D×�l[4], jÏ EPA� 5C� Q&w .}��-

A5 ØO� \! "#¾� T;�� �� � ÙÚÛ2*� ! .}

��-A5 LC50 � EC50, 1.1-10 mg/L� Â'9Ü)[6].

����� *+, g �$p pj Ò*+� Ý[�� (� 4Þ

� ¡. �F�� (�@ g �>�p ßM Fà .}��-A5 �

M, n/ "e á Qâ�, 1995� 160o ãäå, 1996� 165o ãäå,

2000��: 210o ãäå� ß� ®9' (�l[7], M� @H5 �

Mf 1998�� ·�Q ¸5 -�º», ¼æ5 B�«� Y��

61,287çp �>�Ö�l[8], á �>�, 84,083ç�� 1dè 1.88 kg

? �>! ±�� Â'�' ()[4]. p«¬ ��; dI� ! JCO

p �� ���� é%Ï��: .}��-A� ! "# � �

�f ê, \ë? �ìp' (�l [Qy[��5 �íî � ¹�

ä yï5 >ðO? Ó�9' (Fà[8], M� @H��: p�

! "# j%! �[p).

�� Q«� �$�� 'fÞµ«�yï(Advanced Oxidation Process:

AOP)5 a]�� �²% UV/TiO2� p>! "# êp %&�' (

)[9]. ñâ Aò óÁôõ(Fig. 1), TiO2 ö�� ÷�øF� ¾�9�

�� TiO2 �¤ù(valence band)� (: W¤ Wfù(conduction band)

� Wp�� �' �¤ù�: W¤ .�(: [y(positive hole)?

ú�� w). p� W¤ Wp�:û üâ! ý�øF: bandgap� C

è9: x 3.2 eV [f5 �øF üâ9', 390 nmp95 ã0p p

� Cè�l[10], 390 nm p95 ¤þé? ¾�9� ýµ¨ Aòp %

&w). pÿ ý�ß5 >, $Î Þµ��? êp �>9Ü�@, â

õ, J�, f�S <, nH� ��p@ }�d�} }�, ��j�;

<, t���� , �? º»9: ��� ! "# %& ��

()[11, 12].

GH� � "#: t����f ._ �6Op : }�d�} }

�� TiO2� º»! �W å¬^ ý�ß Þµ0k� p>98 .}�

�-A5 �ðO? ��Â', í; d �� �! Ý/d¤� fP

9:û g � p ().

2. � �

2-1. ����

.}��-A(Sigma-Aldrich Chemical Co., U.S.A.): ��¯x�� 1 mg/

L5 �f� ���¾98 �3� �>9Ü�l, ÛP¯ �>w dichlo-

romethane(DCM), pesticide grade(Merck, Germany)� �>9�l,

.}��-A5 $�¯ JfI¯x�� �>w bis(trimethylsilyl)trifluoro

acetamide(Aldrich Chemical Co., U.S.A.): derivatization grade {?

�>9Ü�l, TiO25 º»�: 98% titanium(IV) isopropoxide(TTIP, Junse

Chemical Co., Japan)� �>9Ü).

å¬, SUS-304 }�d�} }� �+� �� 15 cm, �p 28 cm5

��p', UV ��: 10W-germicidal lamp(254 nm: Sankyo Denki, Japan)S

10 W-blacklight lamp(360 nm: Phillips, Netherland)� �>9�l,

¯ý ���: 10 W-vita-lite lamp(Duro-Test, U.S.A.)� �>98 ý�

5 ]�� G� íî� �3? 9Ü). ®�Q: �Q¾0kd Milli-

Q(Millipore, France)� �;! 3m ®�Q� �>9Ü�l, ý�ß Þµ

Aò� (�� Q�5 >�Þ¡ �fS pH: Aò�f� hi? jk

: �â! d¤[13, 14]p�� ®�Q� 25oC5 ! Q¾�� 20$e

Ä�98 r� >�Þ¡ �f� 8.0±0.2 mg/L [f� a[9� ¾"9

Ü�l, pH5 �Mf 7.0�� ¾"! U �3� �>9Ü).

2-2. TiO2 �� ��

}�d�} }� �+d å¬? '[µ W� #F � nÚ98 $¾�

�� %&p Î' U, '[µ ̄ xd TTIP : EtOH : HCl5 .� 10 : 100

: 1� ¾, 35oC, 300 rpm5 ¾$�� 3̄ e 2´ mixing98 º»=

z? 9Ü�l, ¡O¯ 100oC���( 10-20oC/min5 ¾$�� )!

¯* 500oC�� 4̄ e +«�98 '[µ¯, U �3� �>9Ü).

TiO25 }�d�} }� ö� '[µ: Fig. 2S <, ;[�� 5�, 10

� º»9Ü�l, TiO2 �5 '[µw q�� vd9� �98 video

microscope system(camscope, sometech, Korea)? �>98 300-5 -

î� º».Q� G� }�d�} }� ö�5 ªµ� vd9Ü�l,

TiO2 ��/: º»w ¯05 12? SEM 3h98 vd9Ü).

2-3. ��

� �3� �>w �W å¬^ ý�ß Þµ0k: Fig. 3� @45 6

S <p, ¾>� 5 L5 batch type5 Aò��, q�� ¤þé�7 ��

S 89Hp¢ ��� Ýk98 W¤�[y 4O? �! ý �øFy

���� �>9Ü�l, TiO2 º»w å¬? :� "T, :5 �WQ

Fig. 1. A photocatalytic reaction mechanism.

���� �39� �4� 2001� 8�

��� ����� ��� ����-A � 495

)

� ¾"98 �39Ü). �W å¬^ ý�ß Þµ0k: ýp fX9

: �$? � !�� p>9� �98 Ó(� �>98 å¬5 40%

*� ;�f< 98 �W¯°l, �W� 5! W1ò=5 �4��

dC *p å¬ö��� >�è?Fl, GH� /� �� å¬ö��

Q�p ^Ow). pÿ Q�? ^O! �Wå¬ ö�� ¤þép ¾�

��, ��*+? Þµ�$C9: @A? Q&!). Ç!, pÿ å¬5

�W, Q���5 ��*+5 V�! vÞí; � Q���5 Þ¡ y

�í;� ³S W¤�[y5 4OQî? B8 ý$C íî? q)¯

* Q�5 ��*+5 Þµ�$C� �%¯°: @A? !).

2-4. �� �

.}��-A $�, 1 L5 ¯�� pH 2� ¾[! U NaCl? �9

', DCM 100 mL� ��ÛP98 ÙQCÞ@¢D�� ÛP>ß �

5 Q$? �9' +¡�:�(TurboVap II, Zymmark, U.S.A.)� 0.5 mL

uF �:98 200µL5 N, O-bis(trimethylsilyl)trifluoro acetamide�

98 JfIµ¯, U �!�� 10$e Bk! E, 0.2 mL L �uF

+¡}(99.999%)� $¾¯°' DCM? �>98 1 mL� Â[! U

$�9Ü). ¯�5 ÛP, Â\ � $�¯ .}��-A >PL Q (

: |H}~ >�: �>9F F' 550oC�� 24̄ e J�*? Þµ

9' pesticide grade DCM�� nÚ! J�>�à? �>9Ü�l,

teflon �+5 liner� �>9Ü). Ç!, �3� �>�: ®�Q � >

ß� ¯�G.S 2a! Bï�� ÛP��:98 �3� �� � $

�q5 �m� �9�l, GC/MSD(Hewlett-Packard, U.S.A.)5 scan

mode� ÕP¯e � vd98 sim mode� [�9Ü). � "#� �

>w GC/MSD5 $�¾$? Table 1� @4-Ö). á J��¡�(TOC)

, TOC analyzer(Sievers 800, Sievers, U.S.A.)� H[9�l, UV-254

5 �M UV-Vis Spectrophotometer(CARY 100 conc, Varian, Australia

� H[9Ü).

3. �� �

3-1. TiO2 �� �� ��

TiO2� º»9� W�U5 Ij� �%? Fig. 4� @4-Ö). (a):

º»9� W5 }�d�} }� ö�? @4J ±pl, 5� º» U5

�%(b)��: TiO2 º»�� �ÓZ�� K*(: ±? � Q ().

10� º» U5 �%d (c): TiO2 º»�� ^Ow �ÓZ5 *+�

p º».Q5 ®� GH LLp M8 N, �? ^O9' (: ±?

� Q (). OPS QR Y5 "#[15, 16]��f TiO2 � ^O¯ �

4� �S�på: Q$p ��A � Q$C98 QÞµ�� jФ

�' p�� �� TN98  ep ê, T�q #¾� ^O!)'

Â'9Ü). Ç!, º».Q� G� TiO2 �5 �/ªµ� Fig. 5� @

4-Ö). 5� º»! }�d�} }� ö�5 TiO2 � �/: 285 nm,

10�5 º»� 5C�: 445 nm� @4U).

Fig. 2. The immobilization procedure of TiO2 thin film on a substrateby a sol-gel process.

Fig. 3. Schametic diagram of a RPODrum reactor apparatus.

Table 1. Analytical conditions of bisphenol-A by the gas chromatograph/mass selective detector

-Gas chromatograph: HP 6890 series plus -Mass selective detector: HP 5973 series, electron ionization mode-Column: HP-5MS(30 m×ID 0.25 mm×0.25µm)-Injection temp.: 250oC, Detector temp.: 280oC-Oven temp.: Initial temp. 80oC, Hold 3 min, Increase rate of 20oC/min, from80oC to 300oC

Fig. 4. Photograph of TiO2 immobilized on a stainless steel(×300).

HWAHAK KONGHAK Vol. 39, No. 4, August, 2001

496 ������������ ����

3-2. ����� �� ����-A ��� ��

2 W/L5 89Hp¢ ��� ý���, å¬ �W�f: 30 rpm��

98 º».Q� G� .}��-A ��i? Fig. 6� @4-Ö).

TiO2 º»�� (F F, å¬��: Aò¯e 90$ 2´ 365 nm5

¤þé� 5C 14% [f5 �î? ÂÜ). UVýép ßI� ¾��

� am �� ßI� 5C �Q�� g $¤@ �¤� ¤ ¯°l, p

¤ � üâ! �øF: ã0 200-800 nm5 þé � ¤þé h@�

� x 1.5-6.1 eV�, p: 8V ]�5 $¤TN? %W�:û üâ!

�øFÂ) �). p UV� 5C ¤ ? �, $¤: %�F�@ %�

F� Xä ^�� 6Y� w)[17]. GH� UVýà��f .}��-A

� ! �Z [f5 Þµðp (: ±�� @4U). Ç!, 5� º»9

8 �5 �/ 285 nmd å¬��: Aò¯e 90$ 2´ 22% [f

5 �î? ÂÜ). A�, 10� º»� 5C �5 �/ 445 nmd

å¬5 �M Aò¯e 90$ 2´ 52%5 B, �î? ÂÜ). pÿ

�î5 mp: TiO2 ��/5 mp�� �dw ±�� ���l,

[\]^[18]S Negishi[19] Y, �5 �/ 400 nm pq�� ý�

ß Aò íîp B, ±�� Â'9' (�l, Candal[20], º»w �

4ôÍ W �� §_Þ5 $C¯ ` �4ôÍ5 2p MaQ< �

4�5 a2f ®!)' D×). GH� pU5 �3��: TiO2

��/ 445 nmd å¬? �3� �>9Ü).

3-3. � ! "#� �� Bisphenol-A ��� ��

ý�5 ]�� G� .}��-A5 � �i? Fig. 7� @4-Ö).

ý�, ¤þé�7 ��(germicidal, 2 W/L), 89Hp¢ ��(blacklight,

2 W/L) � ¯ý ��(vita-lite, 2 W/L)� p>9Ü�l, å¬5 �W

�f: 30 rpm�� 9Ü).

¯ý ��� ý��� �>! �3��: 90$ 2´ x 10% [f

5 Z' �íî? Âd A� ¤þé? ý��� �>! �M 89H

p¢ �� 52%, ¤þé�7 �� 73%� ¯ý ��� �>9Ü? �

Â) ¤þé? ñã0�� 9: ��5 íîp B, ±�� @4U).

¯ý ��5 �M �$5 ã0p ¯ý h@�� TiO2� C a

Op B, ¤þé h@5 ã0p b�$98 a�! ýaO? Jf9

��: �c9Ü� ���� �1�l, d��: ¤þé h@p Íe

¯ý h@��5 TiO25 ýaO íî? Bp: "#[21] f %&�

�g A ±�� ��w).

ñã0p �� )� ¤þé��5 �M: ¤þé�7 ��(254 nm)

Fig. 5. Film thickness of TiO2 immobilized on a stainless steel analyzed by SEM(×40000).

Fig. 6. Effect of TiO2-coating time on the photodegradation curves ofbisphenol-A.

Fig. 7. Effect of the light source on the photodegradation curves ofbisphenol-A.

���� �39� �4� 2001� 8�

��� ����� ��� ����-A � 497

89Hp¢ ��(360 nm) Â) ýAò íîp B, ±�� @4U

). $Î TiO2� �>98 Q�5 Íh'� ! �ð? �! i

Y5 "#[22]��f 89Hp¢ �� Â) ¤þé�7 ��5 ýAò

íîp B, ±�� Â'9' ().

3-4. � ! $%� �� ����-A ��� ��

ý�5 n�� G� .}��-A5 � �i? Fig. 8� @4-Ö).

89Hp¢ �� Â) íîp B, ¤þé�7 ��� ý��� �>

98 0-6 W/L j�5 ýn� ªµ� G� .}��-A5 �ð? ¾�

9Ü�l, å¬5 �W�f: 30 rpm�� '[98 �39Ü).

¤þé ý�? �>9F F', þ� ý�? m198 å¬5 �W�

à 5�! Aò(0 W/L)��: �5 � p��FF Fk�l, �7

��5 ýn� 2, 4, 6 W/L� BÍ+Q< �îf Aò¯e 90$ 2

´ 73, 86, 97%� .l98 ®9Ü). p: å¬� '[µw TiO25

1�ö� è fX9: ý�p ®98 Aòíîf Bͦ)' �1

w). Óm ý�ß Aò�� Aò�f: �Z [fuF: ý�� .l

9', x 250 W/m2 pqp �� ý�5 n�� .l9� �l, ý�

p F@k� ê��, W¤-[y �TN Aò�f ý�ß Aò�fÂ

) ¼F� ��� ý�ß ÞµAò íîp ¶9!)' �²³ ()[23].

3-5. &%' () *+� �� ����-A ��� ��

�W å¬^ ý�ß Þµ0k�� y�S +¡� 0.5 L/min�� ñK

9Ü? � ý�ß Aò� 5! .}��-A5 ��i? Fig. 9� @4

-Ö). ý�5 n�: 6 W/L, �W�f: 30 rpm�� 98 �39Ü).

� �3T;��: y�S +¡5 ñK� 5! .}��-A �î5

q), : ±�� @4U�l, OH Hop5 ^O? �%9� �98

y�, Þ¡, ;ÞµQ¡ Y5 ÞµI(oxidant)� Û �� qK9� �

� �îp q)!)' Â'9Ü'[24], WeiS Wan5 "#[25]��f

Q�5 >�Þ¡ �f B?Q< ýÞµ íîp ®!)' D×).

� �3��: å¬5 �W� 5C y��5 Þ¡ Q��� >C�

� å¬5 �ßö�uF vÞ�� ý�ß Aò? �! y�@ +¡5

ñK JÙ� \/ p Q�5 >�Þ¡: Aò¯e 90$ 2´ 8.0±0.2

[f� ªµ : ±�� @4@ å¬5 �W� 5C >�Þ¡ �

$r y�s? � Q (Ö). �W å¬^ ý�ß Þµ0k� �>A �

M �Q d Þ�0k üâ � � y[� >9��: ßM J

�9)' ����%).

3-6. PODrum! ,-./ 01� �� ����-A ��� ��

ý�ß Aò�� 5! ý�5 n�(6 W/L)S PODrum5 �W�f�

G� .}��-A5 ��i? Fig. 10� @4-Ö). t, �W�f�

G� �î, Aò¯e 90$ 2´ 30, 60 rpm�� �WA �M 97%,

120 rpm5 �M: 99%5 �î? ÂÜ�l, 240, 360 rpm5 �M:

.}��-A �: Aò 40$à� uW ��Ö). Ç!, �W�f

240 rpm pq��: �W�f5 ®�f b#9' �íî5 q),

@4@F Fk). p: Zhang Y5 "#[26]��f �ö*+5 �f, Þ

µy[2´ �� �� ¤þé? ¾��: *5 I , �Wå¬5 F_

; �p, å¬5 �W�f Y5 ªQ�� �W�f5 �M �[ �W�

f pq��: ý�ß Þµíî5 ® Ö)' Â'9Ü).

Fig. 8. Effect of UV light-intensity on the photodegradation curves ofbisphenol-A.

Fig. 9. Effect of aeration on the photodegradation of bisphenol-A.

Fig. 10. Comparison of bisphenol-A removal efficiency with respect torotating speed.

HWAHAK KONGHAK Vol. 39, No. 4, August, 2001

498 ������������ ����

3-7. 2%3 ���

�W å¬^ ý�ß Þµ0k� p>98 .}��-A 1 mg/L Þµ

�¯ J�*�f(TOC, UV-254) ªµ� ! T;� Fig. 11� @4-

Ö�l, å¬5 �W�f: 240 rpm, 6 W/L5 ¤þé�7 ��� �>

98 �39Ü).

4O �Þ*p@ J�* Å�5 ®¥ªµ� �� �� vdA Q (

: TOCS Q�5 �¡ 2� TN? % b§µ �µQ¡� @4-:

UV-2545 �M ý�ß ÞµAò r��( �vr w�å: ±? � Q

(). �¡@ ��; <, Þµ: �ö*+5 Þµ¯ p�5 Þµ=

� 5C �ö*+5 #¾� ª^¯* )� ^�5 ¡Ø�Þ*? ^O

98 Q�5 TOCS <, J�* �f5 ªµ��: Aò r��: J

�* �f x ªµ �@ ¾t w�å: �i? @4J)[27, 28].

gV@ TiO2� p>! ý�ß ÞµAò��: )� �Þ*5 4O p

�ö*+? Þµ��¯°: ±? � Q (�l, y Y5 "#[9]��

f geosmin? ��; TiO2 ý�ß� p>! Þµ¯ ��5 ÞµAò�

5C�: Aò¯e 300$ 2´ 6]5 �Þ*? vd9Ü', 5]p u

W ��F z! A�, TiO2� p>! ý�ß ÞµAò� 5C�: 4

O�Þ*, Aòr��( vdA Q Ö�l 240$ U�: geosminf

uW ��Ö)' Â'9Ü).

3-8. PODrum� !4 ����-A! �5./ 67

GlazeS { Y5 "#Â'[29, 30]� 59� �fÓ|6�� ln(C/C0)

vs. timep �é6�� @4} �M pseudo-first order rate� öI ð

9)' Â'! 6 (). GH� � "#5 �3T;�� #! �íî

? p>98 � Aò��5 Aò �fqQ� 6 (1)� #9Ü�l, 50%

�¯©d A¥� t1/2? 6 (2)� #9Ü).

C/C0=exp(−k�t) (1)

t1/2=0.693/k (2)

8�� "0~, C(Aò¯e U �f)S C0(r��f) <? �(C=

C0)5 ~p�� 1pl, k: �fqQ, t: Aò¯ep). 6 (1)? p>9

8 8V �3¾$�� @! T;� ��$�98 �fqQ k� #9

Ü', 6 (2)� p>98 .}��-A5 A¥� t1/2? #! T;� Table 2

� ¯9Ü).

TiO2 º» .Q5 ®� G� Aò�f qQ: 5�, 10�� ®A

Q< 2.25, 5.6- [f ®9Ü�l, ý�5 ]�� G� ��f:

¯ýd ¯ý �� 0.0012 min−1�� 0 Z�', 89Hp¢ �

�S ¤þé�7 ��5 �M 0.0067, 0.0111 min−1�� ¯ý �� Â

) ��f 5.6, 9.3- [f �� ±�� ¾��Ö). Ç!, ¤þé�

7 ��5 ýÑf � å¬5 �W�f ®� G� Aò�f qQ5 ª

µ: ýÑf 2 W/L�� 4, 6 W/L� ®AQ< x 1.6, 2.4-, �W�

f 30 rpm�� 60, 120, 240 rpm�� ®AQ< 1.3, 2.2, 5.2- [

f ®9Ü). GH� WI �� 0 íî d ÞµAò? JfA

Q (: ¾$, ¤þé�7 ��� �>98 ýÑf 6 W/L, å¬5 �

W�f 240 rpm5 ¾$pl, p� 1 mg/L5 .}��-A� �¯ .}

��-A, UV-254 � TOC� 50% �9:û ��: ̄ e(t1/2), 5$, 5.8

$, 10.7$ [f� @4U).

� "#� p>w �W å¬^ ý�ß Þµ0k: Q«� >� (

�� [Q5 'fÞµ y[p@ 9��Q5 4*¨ «�y[5 U«

� y[�� 4èA ±�� ��w).

Fig. 11. Photodegradation of TOC and UV-254 in a RPODrum reactor(240 rpm) with elapsed time.

Fig. 12. Pseudo-first order removal of bisphenol-A with various conditions.

���� �39� �4� 2001� 8�

��� ����� ��� ����-A � 499

An

,

.:

.

n

of a

ne, 4

n-

ng

un

es-

4. � �

�W å¬^ ý�ß Þµ0k� p>98 -$. 01*+d bisphenol-

A ��3? )Z! ¾$�� Q&! T; )·; <, T�? �?

Q (Ö).

(1) TiO2 º».Q� G� �5 �Oªµ��: 5� º» U�:

TiO2 T�q #¾� ^O9Ü�l, 10� º» U�: T�q #¾

º».Q ®Å� GH LLp M8 N, �? ^O9Ü). º».Q

� G� �5 �/: 5� º»¯ 285 nm, 10� º»¯ 445 nmpÖ).

(2) TiO2 º».Q� G� .}��-A ���: º»«�� 9F

F, �M, 89Hp¢ ��� 5C 14% [f5 �î? ÂÜ�l, º

».Q 5�, 10�� ®AQ< 22%, 52%� �íîf q)9Ü).

(3) ý�5 ]� � ý�5 n�� G� .}��-A5 � �i��

: ¯ý �� Â) 89Hp¢ ��S ¤þé�7 ��5 ��f

5.6, 9.3- [f �� ±�� @4@ ¤þé�7 ��5 íîp 0

B, ±�� @4U�l, ¤þé�7 ��5 ýn� 4, 6 W/L� ®

AQ< �îf 86, 97%� .l98 q)9Ü).

(4) y�S +¡5 ñK� 5! .}��-A5 �î��: ñK? 9

F F, �MS mp Ö�l, p±, å¬5 �W� 5C y��5

Þ¡ *� >C�� �$r y��: ±�� ���Ö).

(5) å¬5 �W�f 30, 60 rpm�� 90$ 2´ Aò¯ 97%5

�î? ÂÜ�l, 120 rpm, 99%, 240 rpm�� �W¯5 .}��-A

: 40$à� uW ��Ö�l, TOC, UV-2545 �Mf �5 60$à

� ��Ö).

(6) � Aò�� #! �fqQ, kS A¥�, t1/2� Table 2� ¯9

Ü�l, .}��-A5 uW� � �� �� �! � ¾$, TiO2

º».Q 10�, ý� ]�: ¤þé�7��, ý�5 n� Ñ9', å

¬5 �W�f: 240 rpma � 0 íî pÖ).

� �

1.���, ���, ��, ��: ������ 2000 �����

���� ���, 167(2000).

2.���, ���, !�, "�#: ��$�%��&�'(����

�!)������ ���, 55(2000).

3. Colborn, T., Cumannoski, D. and Myers, J. P.: Our Stolen Future, (1996).

4.��*, '+����,, “99 -./� 01(2 34&��45

6789:,” (2000).

5. U.S. EPA, “Special Report on Environmental Endocrine Disruption:

Effects Assessment and Analysis,” Risk Assessment Forum, U.S. EPA

Washington D.C., 116(1997).

6. Alexander, H. C., Dill, D. C., Smith, L. A., Guiney, P. D. and Dorn, P. B

Environ. Toxicol. Chem., 7, 19(1988).

7. Industry News, ChemExpo, Chemical Profile, Bisphenol-A(1996)

8.;<=, >?@, ABCD: Proceeding of 8th. Annual Conference o

Ozone Science and Technology, Kagoshima, Japan(1999).

9. Kim, Y. U., Son, H. J., Yu, M. H., Kim, S. Y. and Kim, C.: J. Korean

Society on Water Quality, 16(4), 445(2000).

10. Hussain, A. E., Ali, S. A., Joan, S. and Wendy, S.: Proceedings

Symposium on Advanced Oxidation Processes, Toronto, Canada, Ju

(1990).

11. Yun, J. K., Kang, J. W., Lee, T. K., Jeon, M. S. and Joo, H. K.: J. Korean

Society of Environmental Engineering, 21(5), 1003(1999).

12. Joo, H. K., Jeon, M. S. and Lee, T. K.: J. Korean Society of Environ-

mental Engineering, 21(6), 1231(1999).

13. Chun, H. D.: J. Korean Society of Environmental Engineering, 16(7),

809(1994).

14. Xu, N., Fan, Y., Dong, J. and Shi, J.: Ind. Eng. Chem. Res., 38(2), 373

(1999).

15.EF G: ECO Technology, 5(3), 5(2000).

16.HIJK, LMNO, PQRS: TUVWX, 54(1998).

17. Schulz, J. P.: Analysenverfahren mit UV-photobiologische UV-Wirku

gen, medizinische und kosmetische UV-Behandlung, UV-Entkeimu

von Wasser, Luft etc., Technische Akademie Esslingen Weiterbild

gszentrum, Lehrgang Nr. 13656/43.127, UV-Strahlung-Erzeugung, M

sung und Anwendungen, 11-12. Mar.(1991).

18. Inoue, Y., Ikeda, Y. and Yoshimura, Y.: ����, 50(1), 90(1999).

19. Negishi, N., Takeuchi, K. and Ibusuki, T.: J. Materials Science, 33,

5789(1998).

20. Candal, R. J., Zeltner, W. A. and Anderson, M. A.: J. Env. Eng., (1999).

21.3�Y, �,Z: ������ 2000 )�������� ���,

269(2000).

22. Son, H. J., Yu, M. H., Cho, K. K., Kim, S. Y. and Lee, S. S.: J.

Korean Ind. Eng. Chem., 11(7), 737(2000).

23. Aguado, M. A., Anderson, M. A. and Hill, C. G.: J. Mol. Catal., 89,

165(1994).

Table 2. Kinetic constant, k and t1/2 values for various experimental conditions(a) Various number of TiO2 coating times(2 W/L, blacklight lamp, 30 rpm)

Number of TiO2 coating times[times] k[min−1] t1/2[min]

0 0.0012 577.505 0.0027 256.67

100 0.0067 103.43

(b) Various light source(2 W/L, 30 rpm)

Light source[-] k[min−1] t1/2[min]

Vita-lite lamp 0.0012 577.50Blacklight lamp 0.0067 103.43Germicidal lamp 0.0111 162.43

(c) Various light intensity(germicidal lamp, 30 rpm)

Light intensity[W/L] k[min−1] t1/2[min]

0 0.0003 23.102 0.0111 62.434 0.0174 39.836 0.0268 25.86

(d) Various rotating speed(germicidal lamp, 6 W/L)

Rotating speed[rpm] k[min−1] t1/2[min]

130 0.0268 25.86160 0.0354 19.58120 0.0599 11.57240 0.1391 14.99360 0.1371 15.06

(e) Various target component(germicidal lamp, 6 W/L, 240 rpm)

Target component k[min−1] t1/2[min]

Bisphenol-A 0.139 4.99UV-254 0.1198 5.78

TOC 0.0646 10.73

HWAHAK KONGHAK Vol. 39, No. 4, August, 2001

500 ������������ ����

24. Butters, B. E. and Powell, A. L.: U.S. Patent, 5, 462, 674(1995).

25. Wei, T. Y. and Wan, C. C.: Ind. Eng. Chem. Res., 30, 1293(1991).

26. Zhang, L., Kanki, T. and Sano, N.: ![ �\ & ]^_� �!

`"�(1999).

27. Kim, E. H., Kim, Y. U., Son, H. J. and Jang, S. H.: J. Korean Sani-

tation, 14(3), 1(1999).

28. Kim, Y. U., Son, H. J., Yu, M. H., Lee, C. S. and Kim, S. Y.: J. Korean

Society on Water Quality, 16(4), 479(2000).

29. Glaze, W.H. and Kang, J.W., Ind. Eng. Chem. Res., 28(11), 1573 (1989).

30. Yun, J. H.: J. Korean Society of Environmental Engineering, 20(4), 711

(1998).

���� �39� �4� 2001� 8�