М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

31
19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 1 Nonlinear Systems Dynamics and Chaos Nonlinear Systems Dynamics and Chaos M.G.Goman Institute of Mathematical and Simulation Sciences De Montfort University, Leicester LE1 9BH

Upload: project-krit

Post on 11-May-2015

312 views

Category:

Technology


2 download

DESCRIPTION

М.Г.Гоман «Динамика нелинейных систем и хаос», доклад на 1-й конференции Института математики и приложений (IMA) по фрактальной геометрии, г.Лейстер (Великобритания), 19 сентября 2000 года. M.G.Goman "Nonlinear Systems Dynamics and Chaos", presentation at the IMA (Institute of Mathematics and its Applications) 1st Conference in Fractal Geometry, De Montfort University, Leicester, the UK, 19 September 2000.

TRANSCRIPT

Page 1: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 1

Nonlinear Systems Dynamics and ChaosNonlinear Systems Dynamics and Chaos

M.G.GomanInstitute of Mathematical and Simulation Sciences

De Montfort University, Leicester LE1 9BH

Page 2: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 2

Chaos in Deterministic Systems:Chaos in Deterministic Systems:What is chaos, Why and When it appears?What is chaos, Why and When it appears?

l Nonlinear dynamic systems and qualitative methods of analysis - equilibria, closed orbits, complex attractors, domains of attraction,

bifurcations,etc.

l Examples of chaotic dynamics- Lorenz system, Henon map, Feigenbaum cascade

Page 3: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 3

Examples of Chaotic DynamicsExamples of Chaotic Dynamics

The Lorenz System3-dim continuos system

The Henon Attractor2-dim invertible discrete map

T ehe Feigenbaum Cascad1-dim non-invertible discrete map

Page 4: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 4

What is Chaos?What is Chaos?

l “…it may happen that small differences in the initial conditions produce very great ones in the final phenomena. A small error in the former will produce an enormous error in the future. Prediction becomes impossible…”

Henri Poincare, 1897

l Chaos: Steady behavior of dynamical system , when all trajectories converge to the strange attractor and exponentially diverge their from each other

Page 5: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 5

Different Types of AttractorsDifferent Types of Attractors

Stable equilibrium (D=0) Stable closed orbit (D=1)

Stable toroidal manifold (D 2) Strange attractor (D=fractional, fractal geometry)

Page 6: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 6

Stability CriteriaStability Criteria

Page 7: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 7

PoincarePoincare Mapping TechniqueMapping Technique

Page 8: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 8

Stable and Unstable ManifoldsStable and Unstable Manifolds

W

W

u2

sn-1

Gn-1,2

W

W

W

sn-1

n-1

u

u

1

1

L

Page 9: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 9

Domains of AttractionDomains of Attraction

Page 10: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 10

Bifurcations of Equilibrium PointsBifurcations of Equilibrium Points

Page 11: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 11

Bifurcations of Closed OrbitsBifurcations of Closed Orbits

Page 12: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 12

HomoclinicHomoclinic BifurcationsBifurcations

Homoclinic intersection

Homoclinic bifurcation and basin boundary “metamorphosis”

Page 13: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 13

Example of Attraction DomainExample of Attraction Domain

Fractal BoundariesFractal Boundaries

Page 14: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 14

Homoclinic Homoclinic Trajectories and ChaosTrajectories and Chaos

Page 15: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 15

Bifurcation Scenarios Leading to ChaosBifurcation Scenarios Leading to Chaos

Landau-Hopf Sequence

Period-Doubling Cascade

Page 16: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 16

Geometrical Properties of Strange AttractorGeometrical Properties of Strange Attractor

Page 17: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 17

RayleighRayleigh--Benard Benard Convection ProblemConvection Problem

Page 18: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 18

The Lorenz SystemThe Lorenz System

Page 19: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 19

Qualitative Qualitative Analisys Analisys of the Lorenz Systemof the Lorenz System

Page 20: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 20

Bifurcation Diagram for Lorenz SystemBifurcation Diagram for Lorenz System

Page 21: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 21

Phase Portraits of Lorenz SystemPhase Portraits of Lorenz System

Page 22: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 22

Lorenz Strange AttractorLorenz Strange Attractor

Page 23: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 23

Sensitivity to Initial ConditionsSensitivity to Initial Conditions

Page 24: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 24

The The Henon Henon MapMap

Page 25: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 25

The The Henon Henon Strange AttractorStrange Attractor

Page 26: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 26

Chaotic Trajectory on the Chaotic Trajectory on the Henon Henon AttractorAttractor

Page 27: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 27

The Logistic Map (1)The Logistic Map (1)

Page 28: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 28

The Logistic Map (2)The Logistic Map (2)

Page 29: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 29

Period Doubling Bifurcation Sequence Period Doubling Bifurcation Sequence in Logistic Mapin Logistic Map

Page 30: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 30

Concluding Remarks (I)Concluding Remarks (I)

l Regular dynamics (linear or nonlinear) is governed by normal, classical geometry

l Irregular or chaotic dynamics is linked with fractal geometry

Page 31: М.Г.Гоман (2000) – Динамика нелинейных систем и хаос

19 Sept 2000 IMA 1st Conference in Fractal Geometry, DMU 31

Concluding Remarks (II)Concluding Remarks (II)

l “Stretching and folding” generates chaosl Essence of Chaos is the “sensitive dependence on initial

conditions”, so that even unmeasurable differences can lead to enormously differing results

l Qualitative methods are powerful but not unique onesl Statistical methods expand the understanding of Chaos